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CHAPTER 1 

INTRODUCTION 

Program slicing is a commonly used approach for understanding and detecting the 

impact of changes to software.  That is, given a variable and the location of that variable 

in a program, tell me what other parts of the program are affected by this variable.  The 

approach has been used successfully for many years for various maintenance tasks 

[Gallagher, Lyle 1991; Tip 1995; Xu, Qian, Zhang, Wu, Chen 2005].  For example, 

slicing was used to help address the Y2K problem by identifying parts of a program that 

could be impacted by changes on date fields.   

The concept of program slicing was originally identified by Weiser [Weiser 1979; 

Weiser 1981] as a debugging aid.  He defined the slice as an executable program that 

preserved the behavior of the original program.  Weiser’s algorithm traces the data and 

control dependencies by solving data-flow equations for determining the direct and 

indirect relevant variables and statements.  Since that time a number of different slicing 

techniques and tools have been proposed and implemented.  These techniques are broadly 

distinguished according to the type of slices such as: Static vs. Dynamic [Tip 1995; Xu, 

Qian, Zhang, Wu, Chen 2005], Closure vs.  Executable [Xu, Qian, Zhang, Wu, Chen 

2005], Inter-procedural vs.  Intra-procedural [Horwitz, Reps, Binkley 1988; Gallagher, 

Binkley 2008], and Forward vs.  Backward [Kumar, Horwitz 2002; Xu, Qian, Zhang, 

Wu, Chen 2005].  
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Previous work on the detection of program slices has most often been based on 

the notion of a Program Dependence Graph (PDG) [Ottenstein, Ottenstein 1984] or one 

of its variants, e.g., a System Dependence Graph (SDG) [Liang, Harrold 1998].  

Unfortunately, all these approaches typically suffer from scalability and computational 

issues due to the fact that building the PDG is complicated in terms of time, space, and 

data related operations.  While there are some (costly) workarounds, generating slices for 

a very large system can often take days of computing time.  Additionally, many tools are 

strictly limited to an upper bound on the size of the program they can slice. 

While the lengthy time constraint is reasonable for deep analysis of systems it 

limits the use of program slicing to only the very critical situations.  Using slicing for 

quick project planning and management decisions is effectively unpractical.  For 

example, if a project team needed to assess the inclusion of a new feature in the next 

version release of a system, program slicing would be a great tool to predict what other 

modules would be impacted.  These impacted modules would of course need to be 

thoroughly tested.  If modules with a high cost to test were to be impacted the risk to 

include that new feature would greatly influence its inclusion in the next release.  It 

would be very beneficial to have some results of program slicing in minutes to help with 

this type of decision making.   

The work presented here addresses this limitation by eliminating the time and 

effort needed to build the entire PDG.  Instead the dependence information is computed 

as needed (on-the-fly) while computing the slice for each variable in the program.  

Lightweight static analysis techniques are used in computing dependencies.  As such, the 
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increase in speed is countered by a possible decrease in accuracy.  The slicing process is 

performed using the srcML [Collard, Decker, Maletic 2011] format for source code.  

Source code is first converted to srcML and then a stream-oriented approach to compute 

the slice is performed.  The srcML format provides direct access to abstract syntactic 

information to support static analysis.  The entire process is very efficient and scalable.  

For example, it takes approximately 20 minutes (using a desktop machine) to convert the 

Linux kernel (~14 MLOC) into srcML and compute the slice for every variable in the 

entire system. 

We feel that our slightly less accurate but highly scalable approach for slicing will 

help enable researchers to more easily investigate large systems and even the entire 

history of a system in the context of program slicing.  Moreover, practitioners will have a 

very practical way to estimate the impact of a change to a large within minutes (or hours) 

instead of days.  This would be very useful to determine if a more accurate analysis of the 

change is necessary and cost effective.  

Because of the potentially complex and nature of heavyweight program slicing, 

new lightweight approaches and tools must be developed to support maintainers working 

in this domain, and an efficient slicing approach is needed to address many unpractical 

problems.  

1.1 Research Overview 

In view of the fact that existing slicing approaches are inadequate for the purpose 

of maintaining large-scale systems, we believe that the work in this dissertation will be 
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important in the future as systems grow and hence the maintenance becomes more 

complicated and costly.   

The objective of this dissertation is twofold.  First, develop a very-efficient and 

highly-scalable lightweight slicing approach and tool.  This approach will compute 

program slices in a drastically more efficient (time-wise) manner.  The second objective, 

due to the efficient nature of the approach it will be used to address a number of 

applications and problems that, in practice cannot be (or are extremely costly) to 

addressed with current heavyweight slicing approaches.  The dissertation addresses the 

following specific problems in novel ways. 

1. Demonstrate the scalability of the proposed slicing approach for large-scale 

systems.  For example, all the slices for 17 years of versions of the Linux kernel 

(over 900 versions) will be performed.  The slicing tool takes a lightweight 

approach; that is the main reason that the analysis over all these versions was even 

possible.  Since a partial parsing of the source code is done (i.e., those source 

statements are in interest) and the time and space required is small and scalable.  

Given that, we can overcome the shortcomings of using traditional intermediate 

program representation models by saving the wasted time and space from building 

the above models. 

2. Investigate how slices change over the history of software system.  This aims at 

introducing a slice-based software metrics over versions history that reflects 

maintenance effort.  These metrics are extracted directly from the source code 

without any other metadata needed, e.g., person hours, passage of time, etc.  This 
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work is the first to uncover the maintenance changes using slicing over a large 

amount of data.  

3. Develop an approach to estimate the maintenance effort for open-source systems 

using the new slice-based metrics.  Three different granularities of slice sizes are 

analyzed (i.e., slice size is computed as the total number of line, functions, or files 

in the slices).  Changes to the system are then modeled using the difference 

between the slice sizes of two versions.  To the best of our knowledge, this is the 

first work applying a slice-based metric to build an estimation approach for 

maintenance effort in open-source systems.  We consider the hypothesis that the 

historical source code changes can be used to regulate effort estimation approaches 

with a high sensible degree of predictive power.  Existing effort estimation models 

are inadequate for the purpose of open-source systems, thus the need to develop 

new models is crucial.  In this dissertation we accomplished a slice-based indirect 

effort-estimation model for open-source systems.    

4. Characterizing the type of maintenance activities (i.e., adaptive, corrective, 

perfective, and preventative) being performed during the lifetime of a large 

software system (e.g., Linux kernel).  The objective is to provide empirical support 

for Lehman’s laws of software evolution [Lehman 1980; Lehman 1996; Lehman, 

Ramil, Wernick, Perry, Turski 1997; Lehman, Ramil 2003].  Lehman proposed a 

number of laws identified initially as a series of observations or behaviors 

formulated starting in 1974 in the evolution of software.  Lehman’s laws of 

software evolution explain the forces that driving new developments on the 
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software on one hand, and the forces that slow down the development progress on 

the other hand.  Although, these laws are believed to observe all the changes during 

the software evolution process, however, some empirical observations of studying 

the development of open-source system appear to challenge some of Lehman’s 

laws [Godfrey, Qiang 2000], since the laws are believed to apply mainly to strictly 

managed and closed-source code systems [Israeli, Feitelson 2010].   

1.2 Contributions 

The primary contribution presented in this dissertation is: 

1. The development of a very-efficient and highly-scalable program slicing approach 

and tool to automatically produce slices for all variables in a large-scale system. 

The ability to apply slicing to large systems opens up new avenues of research.  

The following program slicing applications are considered important in the software 

development process and maintenance.  Unfortunately, no special algorithm in the 

literature has been introduced to serve these applications.  This introduces the need for 

slicing algorithms that compute all the required slices in a more efficient way.  

Specific research contributions include: 

2. Introducing a slice-based software metrics over versions history that reflects 

maintenance effort. 

3. A lightweight approach to estimate maintenance effort for open-source systems 

using the new slice-based metrics.  

4. A characterization of software maintenance activities using Linux kernel, based on 

calculation of different slice-based metrics. 
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5. A characterization of system’s evolution using Lehman’s laws as a basis. 

The first research contribution (CHAPTER 3) has been addressed and the results 

are submitted to the 12
th

 IEEE International Working Conference on Source Code 

Analysis and Manipulation (SCAM’12) [Alomari, Collard, Maletic 2012].  The second 

and third research contributions (CHAPTER 5) are detailed and submitted to the 12
th

 

IEEE International Working Conference on Source Code Analysis and Manipulation 

(SCAM’12) [Alomari, Collard, Maletic 2012].  The fourth and fifth research 

contributions (CHAPTER 4) are addressed and the result is written up for submission to 

the 25
th

 IEEE International Conference on Software Engineering (ICSE’13). 

1.3 Organization 

Background reading is presented in CHAPTER 2; this chapter gives an overview 

of program slicing.  CHAPTER 3 details the lightweight forward static slicing approach.  

In addition, we empirically demonstrate the scalability of the approach over the GNU 

Linux kernel.  CHAPTER 4 shows how slices change over incremental source code 

changes.  It also introduces and validates a slice-based metrics used to provide a 

characterization of software maintenance activities using Linux kernel.  CHAPTER 5 

presents a novel slice-based approach to estimate maintenance effort in open-source 

systems.  This work is a direct application for identifying slice-based metrics for large-

scale systems. Conclusions and directions of future work are presented in CHAPTER 6.  

APPENDIX A includes the XML translation information.  APPENDIX B 

includes slice intersection comparison.  APPENDIX C includes a listing of Linux kernel 
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versions with their slices. APPENDIX D includes the source code scripts used to obtain 

the slice information of the CodeSurfer tool. 

Please note that each chapter contains its own related work section. 
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CHAPTER 2 

BACKGROUND MATERIAL ON PROGRAM SLICING  

In this chapter we discuss the basic concepts and terminology associated to our 

work and that are used in later chapters.   

2.1 Program Slicing  

In computer programming, program slicing is the computation of the set of 

programs statements, the program slice, which may affect or affected by the values at 

some point of interest, referred to as a slicing criterion.  

Mark Weiser [Weiser 1979; Weiser 1981] was the first to propose the idea of 

program slicing.  In short, his idea is based on eliminating any code statement not 

affecting the values computed at a specified point in the program.  Based on data flow 

and control flow dependences, slices are formed by computing consecutive sets of 

relevant statements.   

Based on the original definition of Weiser, informally, a static program slice S 

consists of all statements in program P that may affect the value of variable v at some 

point p.  The slice is defined for a slicing criterion SC = (x, V), where x is a statement 

within program P, and V is a subset of variables in P.  A backward static slice includes all 

the statements that affect variable v for a set of all possible inputs at the point of interest 

(i.e., at the statement x).  Static slices are computed by finding consecutive sets of 

indirectly relevant statements, according to data and control dependencies. 

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Data_dependency
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For example, in Figure 2.1, the statements in the backward slice of the output 

statement write (sum) (in line 8) are highlighted.  This new program is a valid slicing of 

the program with respect to the criterion SC = (write (sum), {sum}).  The value of 

variable sum impacted by lines 1, 2, 4, 5, and 7 in the example code. 

 

 

1. int i; 

2. int sum = 0; 

3. int product = 1; 

4. for(i = 0; i < N; ++i) { 

5. sum = sum + i; 

6. product = product *i; 

7. } 

8. write(sum); 

9. write(product); 

Figure 2.1. The original definition of backward slice of write(sum) as proposed 

by Weiser [Weiser 1981]. 

 

Program slicing has motivated a large body of work for different applications in 

software engineering, and has been found to be of use in many aspects of the software 

development life cycle, including testing, debugging, re-engineering, comprehension, 

maintenance, and measurement [Gallagher, Lyle 1991; Tip 1995; Ishio, Kusumoto, Inoue 

2003; Xu, Qian, Zhang, Wu, Chen 2005; Feng, Maletic 2006; Pan, Kim, Whitehead 
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2006].  These applications require different properties of slices, thus a number of 

different definitions to program slicing have been proposed after Weiser’s.  The main 

distinctions between these definitions are as follows: 

 Static or dynamic slicing [Tip 1995; Xu, Qian, Zhang, Wu, Chen 2005].  Static 

slicing makes no assumptions regarding the input of the program.  The static slice 

includes all statements that potentially affect/affected by the value of a variable at a 

particular point of interest in the program.  This captures all possible executions of 

the program.   

On the contrary, dynamic slicing focuses on a particular input for a program, and 

contains all statements that affect/affected by the value of a variable at a specific 

point in the program assuming a given, fixed input.  This approach gives a better 

understanding of programs and their executions for a particular input [Feng, Maletic 

2006; Zhang, Gupta, Gupta 2007].   

 Direction of program traversal.  Program slicing can be either backward or forward 

[Kumar, Horwitz 2002; Xu, Qian, Zhang, Wu, Chen 2005].  A forward slice contains 

all those statements in the program which are affected by the value of the slicing 

variable at a given point in the program (i.e., statements affected by changing the 

value of the slicing variable), and removes all statements which are not affected by 

the slicing criterion.   

Forward slicing provides support for increasing and improving the understanding 

of large programs, source code debugging, code certification and inspection, and 

program differencing and specialization [Bent, Atkinson, Griswold 2000; Collard 
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2003].  In contrast, a backward slice contains all those statement in the program that 

may affect the value of variable, i.e., those statements that have some effect on the 

slicing criterion.  Although backward slicing often provides more information than is 

needed for many program understanding situations, it can be of use in bug location 

[Tip 1995; Gallagher, O'Brien 2001].   

There are variations from these definitions.  Bergeretti et al [Bergeretti, Carre' 

1985] proposed the notion of a forward static slice, where slices can be defined in terms 

of information flow relations that can be observed from a program in a syntax directed 

fashion.  Horwitz [Horwitz, Reps, Binkley 1988] defines a forward slice as a set of 

statements affected by the value of the variable in the slicing criterion, rather than an 

executable subprogram.  Two definitions of forward slicing are introduced and related 

back to traditional definitions of forward and backward slices. 

 Whether the slice is executable [Xu, Qian, Zhang, Wu, Chen 2005].  An executable 

slice means that the slice can be compiled and run.  Non executable slices do not 

constitute an executable program, and form a subset of statements of the program that 

affect/affected by the value of the slicing variable.  The requirement that a slice be an 

executable may be too restrictive when the slice is to be used to comprehend a 

program or in the impact analysis. In those two cases, Kumar et al [Kumar, Horwitz 

2002] mentioned that it might be more appropriate the slice to be a sub-statements of 

the program’s statements, rather than an executable. 

 Scope of the slice [Horwitz, Reps, Binkley 1988; Binkley, Gallagher 1996].  The slice 

can also be characterized in how it handles slicing across procedure boundaries called 
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inter-procedural slicing, or locally, called intra-procedural slicing.  In [Weiser 1984] 

Weiser introduced inter-procedural program slicing, and extended his previous intra-

procedural work proposed in [Weiser 1981].  In that work he determines the effect of 

call statements on the set of relevant statements.  To do so the slicing criterion is 

extended with those argument variables.  All of the types of slices are presented by 

Venkatesh [Venkatesh 1991] in terms of semantic approaches.   

In contrast to any differences, the common factor between these diverse 

definitions is that they are based on the notion of a PDG, or one of its variants.  The 

definition introduced by Ottenstein et al [Ottenstein, Ottenstein 1984] redefined static 

slicing in terms of a reachability problem on a PDG based on data flow and control flow 

dependencies.  That is, all of these approaches depend on the calculation of a fully-

computed PDG.  For a large program the resulting PDG can be quite large.   

The approach presented in this dissertation does not depend on the creation of a 

fully-computed PDG.  Instead the required dependence information is retrieved as needed 

while computing the slice for each variable in the program.  This will be explained in 

more detail in the next chapter. 

2.2 Data-flow and Control-flow Dependencies  

Simply, a data or flow dependence means that the calculations performed at one 

statement directly depend on the calculation from other statement.  For example, as 

shown in Figure 2.2, consider statements S1 and S2 we say that data dependence exists 

from S1 to S2 via variable A, since its value is used in calculation S2. 
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S1. A = B * C 
 

S2. D = A + E 

Figure 2.2. Data dependence of statements S1 and S2 via variable A, (variable D 

depends at variable A value from S1). 

 

A control dependence implies that the computations performed at one statement 

are directly depending on the result of a conditional predicate which determines whether 

the statement is executed.  This can be seen in Figure 2.3 where statement S1 is a 

conditional predicate whose result determines whether statement S2 is executed. 

 

S1. if (A) then 
 

S2. B = C + D 

Figure 2.3. Control dependence of statement S2 on the evaluation of the condition in 

S1, (execution of S2 depends at S1). 

 

Based on the scope of the slice, there are variations of these definitions.  The data 

and control dependencies could be either inter-procedural or intra-procedural.  That is, 

the inter-procedural and intra-procedural dependencies are defined as follows:   

 An intra-procedural data-dependence relation between two points exists if the first 

point may assign a value to a variable that may be used by the second point.   

 An intra-procedural control-dependence relation between two points exists if the 

first point is a conditional predicate, and the execution at the second point directly 

depends on the result of the first point.   
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 In addition, there is an inter-procedural data-dependence relation between each 

function call argument and the corresponding parameter.   

 Finally, there is an inter-procedural control-dependence relation from each call 

point of a function to its signature. 

In the computation of a slice, these dependencies information is required and 

should be considered in order to construct the program slice. 

2.3 Program Dependence Graph 

The PDG graph for the program is a directed graph whose vertices represent the 

assignment statements and control predicates.  The vertices are connected by two types of 

intra-procedural edges that represent either a control dependence or data dependence. 

In more details, each program’s simple statement and control predicate is 

represented by a node.  Simple statements comprise assignment, write, and read 

statements.  Compound statements comprise loop and conditional statements and they are 

represented by more than one node.  The edges in a PDG are two types: data dependence 

edges and control dependence edges.   

A data dependence edge between two nodes implies that the computation 

performed at the destination node of the edge directly depends on the value computed at 

the source node of edge.  That is, the source node has the definition of the variable used 

in the destination node. This definition of data dependence ensures that each use of a 

variable is reached by exactly one definition, i.e., no in between any other definition of 

the variable.  A control dependence edge between two nodes implies that the result of the 
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predicate expression at the source node determines whether to execute the destination 

node. 

 

1. void main( ) { 

2.       cin>> n; 

3.       int i = 1; 

4.       int sum = 0; 

5.       while(i <= n) { 

6.               sum = sum + i; 

7.               ++ i; } 

8.       cout<< sum; } 

Figure 2.4. Intra-procedural Data and Control dependencies source code example. 

 

The SDG graph is a directed graph consisting of interconnected PDGs (one per 

procedure) by the inter-procedural control and data dependence edges.  That is, control 

edges connect procedure call sites to the entry points of the called procedure, and data 

edges represent the flow of data between actual parameters and formal parameters (and 

return values).  In SDG there are several types of vertices and edges that do not found in 

PDG [Tip 1995; Binkley, Harman 2004] (e.g., call-site vertex, actual-in vertex, formal-in 

vertex, parameter-in edge, etc.).   
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Figure 2.5. The PDG of the sample source-code in Figure 2.4. 

 

Figure 2.5 shows a simple PDG graph for the example program of Figure 2.4.  In 

this example, each node of the PDG represents one statement of the program (e.g., in this 

particular example the eight statements are represented by eight nodes).  The bold 

directed edges correspond to intra-procedural control dependence, and the dashed 

directed edges represent intra-procedural data dependence.   

By using the PDG in the slicing process, these dependencies are calculated in the 

preprocessing phase before the slicing process is started.  Such as, the slice is constructed 

by traversing the considered data and control edges to retrieve all reachable nodes from 

the slicing node. 
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CHAPTER 3 

LIGHTWEIGHT FORWARD STATIC SLICING 

The work presented in this chapter introduces our lightweight slicing method and 

tool.  The method leverages an XML representation of C source code called srcML.  The 

program dependence graph is not computed for the entire program but instead the 

dependence information is computed as needed while computing the slice on a variable 

(in Section 3.4).  The result is a list of line numbers, dependent variables, aliases, and 

function calls that are part of the slice for a given variable (in Section 3.2).  The tool 

produces the slice in this manner for all variables in a given system.  The tool is highly 

scalable and can generate the slices for all variables of the Linux kernel in less than 15 

minutes.  Benchmarks results are compared with the CodeSurfer slicing tool (in Section 

3.5). 

Forward static program slicing [Bergeretti, Carre' 1985] refers to the computation 

of program points that are affected by other program points.  The forward slice from 

program point p includes all the program points in the forward control flow affected by 

the computation at p.  Program points (or variables) are the most basic fragments of the 

source code.  A program may contain multiple files, a file may contain multiple 

functions, a function may contain multiple lines, and a line may contain multiple 

variables.  In this work, for convenience, we report the impact at the variable granularity. 
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A forward, static, non-executable, inter-procedural approach to program slicing is 

taken to build our approach to lightweight slicing.  The approach varies from the 

traditional definitions in two ways.   

1. A PDG is not computed for the entire program,  

2. The slicing criterion does not require a precise reference to a location in 

the source.   

The approach relies on an underlying XML representation of the source code, 

namely srcML [Maletic, Collard, Marcus 2002; Collard, Kagdi, Maletic 2003; Collard, 

Decker, Maletic 2011].  srcML augments source code with abstract syntactic information.  

This syntactic information is used to identify program dependencies as needed when 

computing the slice.   

srcML (SouRce-Code Markup Language) is an XML format used to augment 

source code with syntactic information from the AST to add explicit structure to program 

source code.  Of interest for this particular task, srcML takes an unprocessed view of the 

source code, i.e., before the c-preproccesor is run, and provides a relatively compact 

representation of the program.  The srcML format is supported with a toolkit, src2srcml 

and srcml2src, that supports conversion between source code and the format.  Multiple 

languages, including C, C++, and Java, are supported.  Once in the srcML format, 

standard XML tools can be used for analysis.  This format has been previously used for 

lightweight fact extraction[Collard, Kagdi, Maletic 2003; Collard, Decker, Maletic 2011], 

source-code transformation [Collard, Maletic, Robinson 2010; Collard, Decker, Maletic 

2011], and pattern matching of complex code [Dragan, Collard, Maletic 2006].   
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Before presenting the lightweight static forward algorithms, we define our slicing 

criterion, and then show how a slice is computed using this approach. 

3.1 Extended Slicing Criterion  

We define our slicing criterion to consist of a file name, a function name, and a 

variable name.  This slicing criterion is the triple (f, m, v) where f is a file in the system, m 

is a function/method in the file f, and v is a variable in the given function m.  This 

definition of a slicing criterion does not require a precise reference to a statement 

number.  This concept of slicing is used by Gallagher et al [Gallagher, Lyle 1991; 

Gallagher 2004] and is referred to as a decomposition slice.  The definition includes all 

relevant computations involving a given slicing variable. 

A decomposition slice can be viewed as a union of a collection of slices taken at 

individual statements on the given variable [Gallagher, Lyle 1991].  The example used by 

Gallagher does static backward slicing only.  The decomposition slice on variable v is the 

union of backward slices taken at a set of statements that output variable v in addition to 

the slice taken at the last statement in the program.  The last statement is included so that 

a variable which is not part of the program output may still be used as a decomposition 

criterion.  

For example, from Figure 3.1 If we perform two backward slices for the program 

using the criterion (c, s4) and the criterion (c, s6), i.e., both statements that output value of 

the variable c, the resulting slices are the statements {s1, s2, s3, s4} and {s1, s2, s5, s6} 

respectively. The slicing criterion using line s6 is not sufficient to capture all 
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computations over the slicing variable c, given that statement s3 is not retrieved in the 

slice, even though it alters the value of the slicing variable.  

For our static forward decomposition slicing we modify Gallagher’s definition by 

slicing at the set of statements that assign (or input) to the given variable v.  This choice 

is motivated by the example given in Figure 3.1.  If we perform two forward slices of the 

variable c in this program starting at statements s3 and s5, i.e., both statements that assign 

(redefine) a value to the variable c, then the resulting slices include the statements {s3, s4} 

and {s5, s6} respectively, that is, statements impacted by the value of variable c.  Slicing 

from the assignment statement in s3 is not sufficient to capture all the impacted 

statements by the value of c, given that statement s6 is not retrieved in the slice, because 

the value of c assigned in statement s3 can never reach the use of c on statement s6, as 

there is an assignment that redefines c in statement s5.  Therefore, the decomposition slice 

obtained by a forward slicing algorithm for the example in Figure 3.1 using the variable c 

is equal to slice (c, s3) ∪ slice (c, s5).   

 

s1.cin >> a; 

s2.cin >> b; 

s3.c = a + b; 

s4.cout << c; 

s5.c = a – b; 

s6.cout << c;  

Figure 3.1. Slicing motivation proposed by Gallagher [Gallagher, Lyle 1991]. 
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From the point of view of data-flow analysis the decomposition slice could be 

either backward-based or forward-based.  That is, the backward-based decomposition 

slice is computed iteratively by propagating information from the outputs of variables to 

their inputs, and from inputs to outputs in the case of forward-based decomposition slice.   

The quality of the decomposition slice is affected by the quality of the slice, since 

as shown the definition of decomposition slice is independent of any underlying slicing 

technique.  Once a slice is obtained using any slicing algorithm, a decomposition slice 

may be computed [Gallagher, Lyle 1991; Gallagher 2004].  

3.2 Slice Profile and System Dictionary Construction 

In the computation of a slice, certain dependence information is required.  Unlike 

other slicing techniques, our algorithm does not rely fully on pre-computed data and 

control dependencies since they can require costly analysis, e.g., constructing the def-use 

chains in the existence of pointers.  Instead, this is calculated as needed on the fly for the 

slicing variable while constructing the slice.   

The approach computes a slice profile that contains all the relevant statements, 

from all possible slices, over a given slicing variable v.  After the algorithm is applied, 

the slice profile associated with a variable v consists of the lines of code transitively 

affected by the value of v along control and data dependencies.   

By modifying the slicing criterion to be (f, m), our approach can retrieve the slices 

for all the variables inside a given function.  Moreover, the slicing criterion (f) can be 

used to find all the slices of all variables in all functions in a given file.  A system 

dictionary can be built, referred to as (F, M, V), and includes all files in the system, all 
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functions in each file, all variables in each function, and all the global variables in the 

system.  Each entry of the system dictionary is a single slice profile with the following 

structure: 

 

file_name / function_name / variable_name / @index, slines, 

cfunctions, dvariables, pointers. 

 

The field @index is the index of the slicing variable as declared inside the 

function, slines is a finite set of the slicing statement numbers, cfunctions is a finite set of 

the called functions with the slicing variable, dvariables is a finite set of dependent 

variables affected by the value of the slicing variable, and finally pointers which is a 

finite set of the pointer aliases of the slicing variable.   

For example, Figure 3.2 (B) shows the relevant slice profiles for slices taken with 

respect to defined variables in the source code in Figure 3.2 (A).  The slice profiles are 

computed from Line 1 to Line 11.  For example, the slice profile of variable z = (slines (z) 

∪ cfunctions (z) ∪ dvariables (z) ∪ pointers (z)); thus, the slice profile includes the 

transitive closure of the data and control dependences of the variable z.   

We now formally define our slicing criterion and how a slice is computed using 

this criterion. 

 Definition (Slicing Criterion):  

A slicing criterion is of the form (f, m, v), (f, m), (f), and (F, M, V), where  
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F = {f1, f2,…, fj} is the finite set of files in the system, M = {m1,m2,…,mj} is the 

finite set of methods for each f  F, and V = {v1,v2,…,vj} is the finite set of variables for 

each m  M.  

 Definition (Forward Decomposition Slice):  

A forward decomposition slice on variable v with respect to the slicing criterion 

(f, m, v) is of the form: 


Nn

nvslicevmfslice


 ),(),,( , 

where N is a set of statements that assigns to the variable v.  For the slicing criterions (f, 

m), (f), and (F, M, V) the slices consist of the union of static forward slices as follows:  
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(A) 

1. f3 (int z) { 

2.   int *zp; 

3.   zp = &z; 

4.   zp++; 

5. } 

6. main () { 

7.   int var1 = 1; 

8.   int *p; 

9.   p = &var1; 

10.   f3 ( *p); 

11. } 

(B) 

file/f3/z/@index (1), slines {1,3}, pointers {zp} 

file/f3/zp/@index (2), slines {2,3,4}, dvariables {zp} 

file/main/var1/@index (1), slines {7,9}, pointers {p} 

file/main/p/@index (2), slines {8,9,10}, cfunctions 

{f3@ (1)} 

Figure 3.2. (A) Sample source code (Pointer program used in Section 3.5), (B) 

System dictionary with four slice profiles for the source code in (A). 

 

3.3  Algorithm Overview 

The slicing process is performed by first converting the source code (.c and .h) 

files into srcML.  Figure 3.3 shows the main components of the approach.  As can be 

seen the source files are converted first using the src2srcml toolkit to srcML 

representation form, then the analyzer component start the slicing decisions at the 

variable level inside the function.  The computations stored inside the slice profile (e.g., 

function calls, dependent variables, etc.) are identified as a result of the processing at this 

level.  
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The architecture of our program slicing method is described in Figure 3.3.  The 

analyzer component did all the slicing decisions needed in order to output the system 

dictionary which includes all the slicing information.  In order to increase the user 

interactivity the analyzer request from the user to specify the slicing criterion, that is the 

user can insert either (f, m, v), (f, m), (f), or (F, M, V) as a slicing criterion.   

The algorithm extracts the source code artifacts that reflect all the possible slicing 

criterions, as follows: to locate the file f (i.e., slice starting point), and the function m 

inside f, the processing starts at the beginning of the srcML documents and reads the 

stream of tokens looking mainly for the srcML elements <unit>, <function>, <type>, and 

<name>.  As they are encountered, tokens are classified using a decision tree as shown in 

Figure 3.4.   

The slicing process considers the inter-procedural and intra-procedural behaviors 

over the entire system by taking into consideration the following language features: 

 Expression statements, 

 Control predicates,  

 Declaration statements,  

 Conditional statements,  

 As well as the function definitions and function calls.   

These are all easily identified in srcML.  The main srcML elements of interest to 

detect the above features are: The declaration of the variable <decl_stmt>, using the 

slicing variable as a parameter in the called function <parameter_list>, a variable used in 

an expression <expr_stmt>, the calling statements <call>, an argument list inside the 
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function <argument_list>.  Finally, global variables are identified by the <decl_stmt> 

elements outside of functions (using static scoping). 
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Figure 3.3. Architecture of the proposed program slicing Algorithm. 
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Figure 3.4. The Analyzer algorithm decision tree, drawn using flow chart symbols. 
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3.4 Analysis Algorithm and Implementation 

Our approach is implemented by the tool srcSlice
1
 as a forward static slicing 

method.  Qt 4.7.0 is used because it provides a fast well-formed XML parser class called 

QXmlStreamReader
2
.  In addition, Qt provides a powerful user GUI framework that 

allowed us to construct an interface for exploration of the different features and 

investigation of the various results obtained by the tool.  The stream reader pulls tokens 

from input srcML one after another as needed.  The main advantage of using the pull 

approach is the ability to construct a recursive parser making traversing the code quite 

simple.  In addition, this approach is memory conservative since there is no need to store 

the entire srcML document tree in memory, as in a DOM approach.   

The computation of the individual slices and the resulting system dictionary is 

computed as follows.   

We first focus on the computation of data slices by identifying direct data 

dependencies (i.e., def-use).  Once this problem is solved, we can compute the transitive 

closure over the data dependencies, and then consider the control dependencies.   

The inter-procedural and intra-procedural dependencies are defined as the same 

definition given above in Section 2.2.  An intra-procedural data-dependence relation 

between two points exists if the first point may assign a value to a variable that may be 

used by the second point.  An intra-procedural control-dependence relation between two 

                                                 

1
 Pronounced, “Source Slice”. 

2
 See http://doc.qt.nokia.com/4.7/qxmlstreamreader.html 

http://doc.qt.nokia.com/4.7/qxmlstreamreader.html
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points exists if the first point is a conditional predicate, and the execution at the second 

point directly depends on the result of the first point.  In addition, there is an inter-

procedural data-dependence relation between each function call argument and the 

corresponding parameter.  Finally, there is an inter-procedural control-dependence 

relation from each call point of a function to its signature. 

To extract the direct data-dependence relations between statements, we used the 

standard definition of def-use chains, except that the forward redefinition of the variable 

is allowed.  For example from Figure 3.1, the returned slice using the criterion (c, s3) 

includes the statements {s3, s4, s6}.  If we allow the redefinition of variable c in statement 

s5 this is the decomposition slice of variable c.   

Let us assume that we are interested in the slice for variable v.  We start with the 

first definition of variable v in function/method m.  Then all the expression statements 

where the slicing variable v is referenced are recorded including assignments, function 

calls, and pointer aliases.  The statements that reference pointer aliases are recorded as 

they are impacted indirectly by the slicing variable.   

The algorithm we present computes the direct data dependencies in two steps: 

1. Definition Detection,  and  

2. Use Verification.   

The output of definition detection is a set of pairs of the form (v, Sp (v)) where v 

is the slicing variable and Sp (v) is v’s slice profile that initially includes the statement 

that defines v.  A new declaration statement for a variable with the same name of the 

existing variable (e.g., due to scope), results in a new slice profile.   
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Use verification ensures that there is a def-use chain from the declaration 

statement in Sp (v) to other statements in the forward trace through which a definition of 

variable v reaches.  As a result these use statements are included in Sp (v).  A failure to 

find a def-use chain will result in an empty slice profile.   

To compute the transitive closure over the data dependencies, all statements that 

include local or global variables affected by the value of the slicing variable are included.  

For example, the slice of an assignment statement {a = c;} with respect to a variable c 

will include the slice profile of variable a.  Detecting such statements is important due to 

the fact that the static slicing necessitates following the slicing variable over all its 

possible values.   

In order to locate all statements relevant to the slicing variable v across the 

boundary of the function m, we consider the following.  Each called function in the set 

cfunctions is mapped to its function signature, i.e., the inter-procedural control-

dependence relation between the call point of a function and its entry.  All arguments in 

these function calls are mapped to the corresponding parameters in the function signature, 

i.e., the inter-procedural data-dependence relation between each function call argument 

and the corresponding parameter. 

Our algorithm for computation of a forward decomposition slice is presented in 

Figure 3.5.  After all above computations, the process of constructing the system 

dictionary occurs from lines 1 to 14.   

The algorithm we present traces the program statements forward to determine 

data and control dependencies between statements.  The algorithm ComputeSlice, shown 
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in Figure 3.5, is the main algorithm for intra-procedural slicing.  The same procedure is 

used when slicing over the called functions from the slice profile of the slicing variable.  

The ComputeSlice algorithm performs forward propagation of variables whose 

definitions are being detected.  Statements and parts of statements are evaluated in the 

order in which they occur.  This algorithm implements the definition detection by 

analyzing the declaration statements (see line 28) and parameter statements (see line 17), 

and implements the uses verification by analyzing expression statements (see line 29).   

The algorithm ExtractGlobal (omitted here for brevity as much duplication exists) 

analyzes global declaration statements in the same way as the definition detection in the 

algorithm ComputeSlice.  The ComputeSlice algorithm is repeatedly called for each 

function in file f to compute the transitive closure over data dependencies.  The definition 

detection generates a set of variables.  The immediate data dependencies corresponding 

to these variables are checked by the use verification, and the dependencies are included 

in the appropriate slice profiles.  From the newly added statements, new sets of dependent 

variables are generated for the transitive closure, and the above steps are repeated until no 

more statements are added to the slice.   

The set V (Vl or Vg) is responsible for storing the slice profiles of the variables.  

The elements in the set are (v, Sp (v)) pairs.  Defined variables are added to the set as they 

are encountered.  For a variable used as an l-value, a slice profile is created (if not already 

present) and the statement line number is added.  This is done while processing 

declaration statements.  When a variable is used as an r-value in an assignment statement, 

the l-value variable of the assignment statement is added to the set dvariables of the slice 
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profile of the r-value variable (see lines 34 and 35).  The set cfunctions for the effective 

variable is filled while processing function calls (see line 44), making it possible to 

compute the transitive closure across the system.   

The algorithm ComputeSlice computes intra-procedural control dependencies as 

follows: Given a statement stmti that has just been included in the slice profile of variable 

v, an immediate control predicate of stmti, say stmtj, must be included in the slice profile 

of variable v.  The main control predicates of interest are: while, for, if, else, switch, case, 

and do.  The return statements are not considered, since our algorithm captures the 

analogous effects of a return statement appearing before the function exit through slicing 

over all variables.  By storing those control-flow statements (loop or condition) when 

stmti is included, we check to see whether it is in the body of the block of a control-flow 

statement.  In this case it is added to the appropriate slice profile.   

Inter-procedural slicing is accomplished easily by mapping the indices of the 

variables in the argument list (see line 20) to their corresponding indices detected in the 

calling statements (see line 49).  From this we recover all statements that are included in 

the slice profile of the parameters.   

For example, as shown from the set cfunctions in the slice profile of variable p in 

Figure 3.2 (B), the function f3 is called using the variable p as index 1 in the argument 

list.  As a result the slice profile of variable z in function f3 (variable at index 1 in the 

parameter list) is retrieved and included in the slice profile of variable p.  
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Input:     Slicing Criterion = (F, M, V) 

Output:  Slice (F, M, V) 

Sp: Slice Profile v  V 

Vl: Set of local variables m  M - elements are the pairs (vi, Sp (vi)) 
 

Vg: Set of global variables f  F - elements are the pairs (vi, Sp (vi)) 

M: Set of functions f  F - elements are the pairs (mi, V (mi))  

F: Set of files in the system - elements are the pairs (fi, M (fi)) 

Xml: The QXmlStreamReader parser 

1: Xml ← setDevice (srcML input) 

2: repeat  

3: for each fi  F do  

 // for each file 

4:     ExtractGlobal (fi)  

5:     for each mi  M do  

     // for each function declaration 

6:         ComputeSlice (mi) 

7:         M ← M ∪ {(mi, Vl)} 

8:         Vl ← Ø 

9:     end for 

10:     F ← F ∪ {( fi, M)} 

11:     M ← Ø 

12:     Vg ← Ø 

13: end for 

14: until the end of srcML input 

 

algorithm ComputeSlice(m) 

15: repeat 

16: for each stmti  m in statement sequence do 

17:     if stmti is a parameter-list then  

    // Detection Step 

18:         for each v  stmti do 

19:             if (Vl = Ø) ∨ (v Vl ) then  

20:                  Sp (v).@index ← {index of v} 

21:                  Sp (v).slines ← {stmti line number} 

22:                  Vl ← (v, Sp (v)) 

23:             else if v Vl then  
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            // update Sp(v)  

24:                  Sp (v).slines ← Sp (v).slines ∪ {stmti line number} 

25:                  Vl ← (v, Sp (v)) 

26:             end if 

27:         end for 

28:     else if stmti is a declaration statement then   

        // Detection Step - repeat the lines 18-27 

29:     else if stmti is an expression statement then 

       // Verification Step 

30:          found ← false 

31:         for each v  stmti , such that, v  Vl do 

32:             found ← true 

33:             if v is a (r-value) , such that, v (r-value) ≠ v (l-value) then 

34:                 Sp (v).dvariables ← { v (l-value) } 

35:                 Sp (v).slines ← Sp (v).slines ∪ {stmti line number} 

36:             else if v (l-value) is a pointer alias of  v (r-value) then 

37:                  Sp (v).pointers ← { v  (l-value) } 

38:                  Sp (v).slines ← Sp (v).slines ∪ {stmti line number} 

39:              end if 

40:              Vl ← (v, Sp (v)) 

41:         end for 

42:         if !(found) then  

                  // for global variable, repeat lines 31 – 41 using the Vg set  instead of Vl set  

43:      end if 

44:     else if stmti is a function call then 

         // extract all the arguments, with their indices 

45:         for each v  argument-list do 

46:            if v Vl then  

47:               Sp (v).slines ← Sp (v).slines ∪ {stmti line number} 

48:               Sp (v).cfunctions ← Sp (v).cfunctions ∪ {function name}  

49:               Sp (v).@index ← {index of v}                 

50:               Vl ← (v, Sp (v)) 

51:            else if v Vg then 

              // repeat lines 47 – 50 using the set Vg  

52:            end if 

53:         end for 

54:     end if 

55: end for 

56: until end of m 

end ComputeSlice 

Figure 3.5. Overview of the lightweight forward static slicing algorithm. 
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By using the system dictionary and our slice profile definition, the transitive 

closure can be found with a single pass through the system.  The set dvariables (v) 

contains all the variables affected by the variable v.  These are the variables in the 

transitive closure of the data and control dependencies of variable v.  This also applies to 

the called functions stored in the set cfunctions and the pointers stored in the set pointers. 

In the next section we will describe the design of the experiments we conducted, 

including benchmarks/open source programs used, and the slicing criterion and the 

evaluation criteria used for comparison.   

3.5 Comparative Study 

To assess our approach and the srcSlice tool we conducted a comparative study 

with the academic version of CodeSurfer
3
 from GrammaTech Inc.  The objective of this 

study is twofold.  First, we want to determine if the slices produced from srcSlice are 

comparable to those produced by CodeSurfer in terms of the correctness and the size of 

the slices.  That is, we compare how srcSlice’s algorithm affects the size and the accuracy 

of the slices compared to a standard.  The second objective is to demonstrate that our 

approach is highly scalable and efficient.  Together these two objectives lead to three 

primary research questions this study tries to address: 

 RQ1: Does srcSlice produce accurate slices? 

 RQ2: Is there an unacceptable level of inaccuracy? 

                                                 

3
 CodeSurfer ® version 2.1p1, Copyright © GrammaTech Inc., See 

http://www.grammatech.com/products/codesurfer. 

http://www.grammatech.com/products/codesurfer
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 RQ3: Is srcSlice highly scalable and efficient? (Will be covered in Section 3.6). 

The question of what is a perfectly accurate slice is somewhat open to 

interpretation [Weiser 1979].  This is the case for many results of static analysis.  For 

example, an empirical study of static call graph extractors by Murphy et al [Murphy, 

Notkin 1998] demonstrates that the call graphs extracted by several broadly distributed 

tools vary significantly enough to surprise many experienced software engineers.  These 

differences are shown with nine different call graph extraction tools of C code from three 

software engineering systems.  In particular, an evaluation and comparison of five 

different implementations of program slicing by Hoffner [Hoffner 1995] showed that the 

resulted slices differ in their size and accuracy.  His study covered three inter-procedural 

slicing tools.   

In order to evaluate our slicing approach, we compare the results obtained by our 

tool to the results of CodeSurfer.  The same benchmarks are given to both tools.  We feel 

that by comparing our results to that of a commonly used existing approach/tool; will 

minimally give us a baseline with respect to the accuracy of the results.  That is, if our 

results are similar to that of CodeSurfer’s we feel confident that it produces reasonably 

correct slices.   

3.5.1 Set-Up and Configurations 

CodeSurfer is a commercial based slicing tool for C/C++ programs.  Produced 

originally as a research tool, it is now available from GrammaTech Inc.  It is based on the 

slicing work done at the University of Wisconsin surveyed in [Horwitz, Reps 1992].   
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This tool starts by generating a control-flow graph (CFG) for each source file in 

the system, and then the SDG is constructed for the entire system.  CodeSurfer views 

slicing as a graph reachability problem, either backward or forward with three options for 

dependences: control-dependence edges only, data-dependence edges only, or both edges.   

There are several features provided by CodeSurfer to assist in the code analysis 

process of slicing including the extraction of return values, passed by reference 

parameters, and modified global variables for a given function scope.  CodeSurfer allows 

the user to control the settings of the above features with five different static-analysis 

parameters that affect the level of precision and consequently the build time.   

For the Super-lite setting all expensive analyses are disabled including pointer 

analysis and no data or control dependencies.  The Lite setting is the same as Super-lite 

except that the control-flow graph is generated.  For the Medium setting the intra-

procedural data dependencies are calculated, but no inter-procedural data dependencies, 

and imprecise, but more efficient, pointer analysis is performed.  For the High setting the 

full functionality is supported with high precision, except that dynamic storage is not 

included in the pointer analysis [Bent, Atkinson, Griswold 2000].  The Highest setting 

eliminates this last limitation. 

In the context of this study, CodeSurfer has two main limitations.  The first 

limitation is that CodeSurfer does not have the ability to slice incomplete and non-

compile-able source code.  While this may not be a major deficiency our approach does 

not require the system to be compiled (or complete).  The second limitation is the free 
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academic version of CodeSurfer used in this study is unable to slice programs larger than 

200 KLOC [Wisconsin] Thus, all of the benchmark cases used here are under 200 KLOC.   

For our study, the Highest setting for CodeSurfer was used to provide the most 

precise results.  We expect to obtain a safe or conservative (definitions introduced in next 

section) slicing results at the expense of longer build times.  Since the tool can be used 

for other tasks than computing slices, all features except the slicing results were turned 

off.   

3.5.2 Evaluation Criteria 

Here we want to evaluate the slicing results of our tool to determine if correct 

slices are produced, and are produced efficiently in both time and space required.  The 

time and cost it takes to generate the slice, including execution time and memory 

requirements, is of particular interest with respect to usability of the method.  In addition, 

we want to determine if the results obtained by srcSlice are comparable to CodeSurfer in 

terms of accuracy.  However, since the implementations of these tools have so few 

aspects in common, it is not meaningful to compare all of the relevant aspects of the 

different implementations.  Therefore, we focus our attention on evaluating slices of both 

tools, by taking into consideration the correctness, size of the results, time and space 

efficiency, and the limitations of both tools.  Finally, we investigate most of the language 

features supported, e.g., is the tool able to handle pointers, call by reference, etc.  
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3.5.2.1 Slice Size and Quality 

The correctness of the slice relates directly to its purpose [Hoffner 1995].  A small 

slice that contains relevant parts of a program for a specific input could be used for 

locating bugs, but it might be too small for applications where we have to consider all 

possible inputs (e.g., overall program comprehension) [Pan, Kim, Whitehead 2006].   

The slice size (denoted by SZ) for both tools is measured by the number of 

statements lines of code.  The best slice for a given slicing criterion should be the 

smallest correct slice.  The slice is safe if it contains every statement that is actually 

affected by the slicing criterion.  A safe slice is conservative if it may be imprecise, i.e., if 

it also contains statements that are not affected by the value of the variable in the slicing 

criterion (false positive).  The minimal slice is a safe slice that contains no unnecessary 

statements [Bent, Atkinson, Griswold 2000], i.e., no other slice for the same slicing 

criteria contains fewer statements.  The slice efficiency factor can be measured by how 

close the resulting slice is to the minimal slice [Hoffner 1995].   

The problem of determining the minimal slice is not in general decidable [Weiser 

1979; Bent, Atkinson, Griswold 2000; Danicic, Fox, Harman, Hierons, Howroyd, 

Laurence 2005].  In fact, such a set is un-computable because of the un-decidability of 

the required static analysis.  However, as mentioned earlier the definition of what is a 

minimal slice depends on the intended use.  Therefore, even with the most precise slicer, 

the resulting slice is at best a conservative approximation of the minimal slice, i.e., the 

resulting slice  minimal slice. 
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A preferred decrease in the slice size is limited by the ability of the resultant slice 

to reflect all system behavioral aspects.  Binkley et al [Binkley, Gold, Harman 2007] 

observed that after studying 43 programs with ~1 MLOC that the most precise program 

slicer had an average slice size equal to 30% of the original program.  He studied five 

factors that may influence the slice size including the expansion of structure fields, the 

inclusion of calling context, the level of granularity of the slice, the presence of dead 

code, and finally the choice of points-to analysis.   

For the purpose of comparison, we use the intersection of corresponding slices 

returned by the both tools, called the intersected slice following the same approach used 

in the qualitative study of Bent et al [Bent, Atkinson, Griswold 2000].  That study and 

compared the dataflow-slicing approach (Sprite) and a PDG-slicing approach 

(CodeSurfer).  Bent used the intersected slice as an approximation of the minimal slice. 

The relative safety margin (denoted by SM) of a slice (size of resultant slice divided by 

the size of the intersected slice) was used to provide a measure of the relative quality.   

Let us assume that the corresponding slices returned from both tools are correct 

with different contents.  In that case, the differing statements are not required to be in the 

slice.  Because the statements they are not included would be incorrect, this is a 

contradiction with the assumption that both slices are correct.  Therefore, a smaller 

correct slice must exist that does not include the differing statements, i.e., intersected 

slice.  Hence, the intersected slice  minimal slice.   

However, as our performance benchmarks results demonstrate in the Slice 

Intersection Comparison section (Section 3.5.3.5); we can obtain several hints that 
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indicate an approximation of the minimal slice using srcSlice tool.  Our results indicate 

that the srcSlice’s slice  intersected slice fairly often, so that the srcSlice’s slice  

minimal slice.   

In this work, the slice size represents the total slice size (denoted TSZ), the sum of 

individual slice sizes for each slicing criterion.  If there are n criterions (denoted by the 

set SC = {sc1, sc2,…,scn}), then the total slice size is denoted by:  

 

3.5.2.2 Slicing Time 

The building time (denoted BT) reports the time required to build the SDG for 

CodeSurfer and the system dictionary for srcSlice.  CodeSurfer does most of its work 

during the build phase.  The build phase pre-computes a large amount of information, 

storing the SDG that contains data and control dependencies, and pointer information.  

Whenever CodeSurfer slices a program, it must reload that information from disk 

with the slicing performed any number of times for a particular load.   

The slicing time (denoted ST) is the time it takes to handle a particular slicing 

request.  If there are n slicing criterions (denoted by the set SC = {sc1, sc2,…,scn}), then 

the total slice time, the sum of individual slice times for each slicing criterion, is denoted 

by: 
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Furthermore, the total time overhead for one build for both slicers is denoted by: 

T (SC) = BT + TST (SC). 

Previous studies on program slicing focus on slices produced using one slicer, and 

do not consider the build time [Binkley, Harman 2003; Binkley, Gold, Harman, Li, 

Mahdavi 2006; Binkley, Gold, Harman 2007; Binkley, Harman, Hassoun, Islam, Li 

2010].  However, Bent et al [Bent, Atkinson, Griswold 2000] verify that many slices 

using CodeSurfer take almost zero seconds once the load time is excluded, such that ST 

(sci)  0.00.  For comparison purpose with our tool, the build times are substantially 

larger than the total slicing time.  Therefore, the time needed for retrieving the slice is 

ignored in our comparison since as mentioned early; both tools do their slicing while 

constructing the system dictionary and SDG.   

We captured the build time for all of the slices using the UNIX built-in time 

command.  The wall-clock time is reported since this represents the actual time a user is 

wait for her results.  The time to convert to srcML is also included.  It took less than a 

second to generate the srcML for the feature benchmarks and close to 11 seconds for the 

largest program, cvs-1.12.10, in the performance benchmarks. 

3.5.3 Benchmarks Studied 

We first ran both slicers on a number of small programs (aka feature 

benchmarks).  These results are used to determine the correctness of our results and help 

explain slicing results in larger programs.  This initial comparison leads us to a more 

comprehensive comparison. 
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Second, we ran both slicers on larger open-source programs (aka performance 

benchmarks) of varying size that worked with both slicers.  These results are used to 

illustrate the first and the second research questions (RQ1 and RQ2) and partially address 

the third research question (RQ3).  Finally, we ran srcSlice on the Linux kernel to answer 

the third research question (RQ3).   

Table 3.1 and Table 3.3 show a list of the feature benchmarks and the 

performance benchmarks, respectively, along with statistics related to the programs.  

These statistics include three measures of program size:  

 The size of each program in LOC as reported by wc –l utility,  

 The size of the program as file counts, and 

 The size of the program as function counts.   

Table 3.2 and Table 3.4 show the results of the feature benchmarks and the 

performance benchmarks, respectively, along with statistics related to the programs and 

their slices.  These statistics include: 

 Slices taken, 

 Slicing time, 

 Slice size, and 

 Slice size relative to LOC. 

In both tables, the number of slices taken represents the number of forward slices 

over all possible criterions for each program.  For CodeSurfer this corresponds to slicing 

for each vertex in the SDG that represents executable code.  In srcSlice this number 

represents the number of variables in the program using the (F, M, V) slicing criterion. 
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Table 3.1. Feature Benchmarks studied. 

Program 

Size Slicing Criterion 

LOC 
# of 

Files 

# of 

Functions 
Method Variable 

Information 

_flow 
112 1 12 

main hi 

All Possible Criterions 

Sum 21 1 2 
main sum 

All Possible Criterions 

Wc 39 1 3 

line_char_count eof_flag 

Scan_line i 

All Possible Criterions 

Pointer 36 1 5 
main var1 

All Possible Criterions 

Testcases 114 1 14 
main var1 

All Possible Criterions 

Callofcall 24 1 3 
main var1 

All Possible Criterions 

Total 346 6 39 
 

Average 57.7 1 6.5 
 

 

Note that in Table 3.2 and Table 3.4, the number of slices for both tools and the 

number of lines of code from the corresponding tables (Table 3.1 and Table 3.3) do not 

match, since in the PDG based slicing approach one line of code could be represented by 

multiple vertices [Binkley, Harman 2003].  In contrast, our slicing approach is a variable 

granularity.  Thus, one line of code may have several variables.   

The line counts for the programs and the slice sizes are included to provide a 

consistent measure of sizes that facilitates comparison with our results. For instance, 
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calculating the intersection of corresponding slices returned require knowing which 

source lines relevant to slicing query. 

3.5.3.1 Feature Benchmarks 

The first study concerns feature benchmarks chosen to evaluate various language 

features, with programs of different sizes and complexities.  A list of these programs is 

given in Table 3.1.   

The column Slicing Criterion contains the inputs used for the slicing process.  For 

each program we used our experience as programmers to select slicing criterion that we 

felt expose the effects of the language features on each slicer’s behavior.  Additionally, in 

order to avoid any possible bias from our choices, we also computed the slice over all 

possible slicing criterions for each program.  This represented in Table 3.1 as All Possible 

Criterions entry. 

CodeSurfer can take different combinations of slicing criterion including the point 

(line number), variable name, and function name.  In order to unify the results obtained 

by both tools and since all feature benchmarks were in one source file, we adjusted the 

slicing criterion for srcSlice to use the criteria format (f, m, v).   

The programs Information_flow, Sum, and Wc were those provided with 

CodeSurfer as critical test cases.  The programs Pointer, Callofcall, and Testcases were 

written by the authors to assess additional critical test cases.  

The main language features of the above programs are as follows: 

 Information_flow: pointers, pointer casting, double pointers, data and 

control dependencies, global variables, function indirection,  
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 Sum and Wc: external libraries,  

 Pointer: pointer flow, 

 Callofcall: nested function calls, and  

 Testcases: functions calls, local and global variables, call by reference, 

call built-in functions, dependence flow. 

The programs we developed attempt to cover a range of test cases in C/C++ that 

are critical for most slicing methods [Binkley 1993; Bent, Atkinson, Griswold 2000; 

Binkley, Gold, Harman 2007].  The purpose of these programs was to exercise the slicing 

behavior and for in-depth analysis.   

In general, these language features included the following: 

 Detecting function calls inside control blocks, such as while, if, for, etc.  For example, 

function f1 is called inside the if-block and while-block as shown: 

 

 

if ( f1(v1, v2) );  

while ( f1 (v1, v2) > 0 ); 

 

 

 Tracking multiple call depths, for instance the f1 function calls the f2 function with 

the slicing variable v1, and the f2 function calls the f3 function with the argument v2 

assigned to, and so on: 

 

 

void f1() { f2(v1); } 

void f2(int v2) { f3(v2); } 
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 Nested function calls, for instance where the function f1 uses function f2 as one of its 

parameters.  We paid particularly close attention to this case, because most of the 

existing static slicing methods do not consider the types of parameters.   

Frank Tip [Tip 1995] shows in his study of 22 static slicing approaches that the 

only approach that takes parameter aliasing into account was with Binkley [Binkley 

1993].  Of the other 21 approaches only 9 could support inter-procedural slicing.  For 

example, the intra-procedural algorithm produced by Weiser does not take into 

account which output parameters depend on which input parameters.   

As we can see in the following example, the value returned from the function f2 is 

used for the second argument of the function f1.  The result is that the slice profiles of 

both functions are merged. 

 

 

f1(v1, f2(v2), v3); 

 

 

 Distinguish between local and global variables having the same name, and detecting 

the flow of the data dependence between them. In addition, there are cases that 

include transitive dependence (indirect dependence).  

 Call by reference parameter passing.  This case supports pointer aliases.  

 

 

void f1(int &x, int y, int w); 

 

 



www.manaraa.com

49 

 

 Slicing over pointer variables.  As shown below the pointer p is defined as a reference 

for the variable v.  So the slice profile of pointer p should be part of the slice profile 

of v, since we can refer to v using the pointer p.  

 

 

int *p; p = &v; f(*p); 

 

 

 Detecting the calls of library functions whose implementation may not be available: 

for example calling function abs () from the library #include <cmath>. 

In our approach, the code in external libraries is not analyzed as in the case of 

CodeSurfer.  Specifically, we do not include any code in the analysis unless specifically 

provided.  We try to keep the slice space at a minimum while still being useful in testing 

and maintenance tasks. 

3.5.3.2 Feature Benchmarks Results 

Table 3.2 shows the results obtained by srcSlice and CodeSurfer for the feature 

benchmarks.  The Program column is the benchmarks used for comparison.  The Slices 

Taken column is the number of forward slices taken by both tools.  As seen in the last 

row of the table, for CodeSurfer the number of slices taken is 444.  For srcSlice 79 slices 

were taken. 

The program Testcases covers most of the language issues discussed in previous 

section.  The slices obtained by running both tools using the slicing criterion (main, var1) 
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were observed to be correct; however, CodeSurfer included some global variables that 

did not have any dependence on the slicing variable. 

Binkely et al [Binkley, Gold, Harman 2007] reasoned that this case due to the fact 

that the slice size in the SDG reports the global variables that modeled as a value-result 

parameters.  Thus each global variable counts as a node in the SDG added at both the 

caller and procedure entry.  In contrast, srcSlice ignores those variables in the returned 

slice.  Table 3.2 demonstrates these results, as the slicing time and the slice size of 

srcSlice are smaller using both types of the slicing criterion.  According to the definition 

by Hoffner [Hoffner 1995], the best slice should be the smallest correct slice.  Manual 

checking of the slices produced by both tools showed that they were 100% correct; 

however srcSlice produced a smaller slice.    

From Table 3.2, we can see that the slice size of srcSlice is consistently smaller 

than the ones produced by CodeSurfer (the average forward slice contained 45.2% of the 

program source using CodeSurfer and 34.1% using srcSlice) except for the program 

Pointer using the slicing criterion (main, var1).   

A closer investigation of this program shows that for the sample code in Figure 

3.2 (A), CodeSurfer has limitations in detecting the flow from pointer *p in line 10 to the 

receiver argument z in function f3, which is assigned in the body of the function to 

pointer zp at line 3.   
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Table 3.2. Feature Benchmarks results and comparison of CodeSurfer and srcSlice, 

time measured in seconds, slice size measured in number of statements, (%) 

columns are the slice size relative to LOC. 

Program 

CodeSurfer srcSlice 

Slices 

Taken 

Slicing 

Time 

Slice 

Size 
% 

Slices 

Taken 

Slicing 

Time 

Slice 

Size 
% 

Information 

_flow 

1 
1.5 

32 28.6 1 
1 

27 24.1 

149 66 58.9 22 48 42.9 

Sum 
1 

1 
6 28.6 1 

0.5 
4 19.0 

26 14 66.7 2 8 38.1 

Wc 

1 

1.2 

16 41.0 1 

0.3 

10 25.6 

1 7 17.9 1 4 10.3 

46 24 61.5 9 19 48.7 

Pointer 
1 

1.5 
11 30.6 1 

0.4 
15 41.7 

37 25 69.4 8 17 47.2 

Testcases 
1 

7.7 
50 43.9 1 

0.6 
44 38.6 

156 79 69.3 24 56 49.1 

Callofcall 
1 

2.9 
4 16.7 1 

0.4 
4 16.7 

23 13 54.2 7 10 41.7 

Total 444 15.7 347 
 

79 3.2 266 
 

Average 34.2 2.6 26.7 45.2 6.1 0.5 20.5 34.1 

 

Bent et al [Bent, Atkinson, Griswold 2000] describe this case as a gray area in the 

CodeSurfer algorithm, and defined it as “handling undefined entities”.  In particular a call 

of the form f3 (&var1) will not be treated as a possible definition of var1.  Also, an 

uninitialized pointer will not be a member of any points-to set so any effects through it 

are not tracked.  That is, the statements *p = var1; z = *p; when slicing on var1 will not 
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add z to the slicing criterion, nor is there a warning.  However, this is not the case when 

slicing over all possible criterions, i.e., the number of slices taken is equal to 37.  The 

slice size is equal to 25, and manual checking of the returned slice showed that 

CodeSurfer detects the lines from 1 – 4 using the slicing criterion (f3, *p) in line 10.   

In contrast, srcSlice, as shown in Figure 3.2 (B), captures this case and included in 

the slice profile for each variable.  This inability to track the chains of pointers in this 

particular example in CodeSurfer results in a slice with missing critical statements, 

especially when the slice includes aliases of the original variable. 

The accuracy of the slices produced using srcSlice for the programs 

Information_flow, Sum, Callofcall, and Wc was identical to CodeSurfer.  The slices 

produced using srcSlice was manually checked and found to be correct.  The difference 

in the results obtained by CodeSurfer was due to retrieving unrelated statements; such as 

statements mentioned inside the blocks of for and while predicates and standard libraries.  

That is, CodeSurfer highlights statements that are not only semantically related to the 

slicing criterion but also syntactically related to the executable slice [Bent, Atkinson, 

Griswold 2000].   For example, CodeSurfer returned all relevant statements that modify 

or determine control flow statement in the else part of an if statement whose body was not 

in the slice.   

As shown, for the settings chosen, CodeSurfer provides a correct slice with 

regards to data and control dependencies.  The results also show that srcSlice produced 

accurate slices when compared to CodeSurfer.  We note again that the settings used for 

CodeSurfer were to enhance accuracy and not performance.   
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3.5.3.3 Performance Benchmarks 

The second study considers just over 700 KLOC of C code from 16 open-source 

programs that range in size from approximately 3 to almost 150 KLOC.   

Table 3.3. Performance Benchmarks (open-source programs) studied. 

Program Version 
Size 

LOC # of Files # of Functions 

ed-1.2 1.2 3087 10 126 

ed-1.6 1.6 3260 10 128 

which-2.20 2.20 3586 14 51 

wdiff-0.5 0.5 3874 13 56 

barcode-0.98 0.98 5205 18 74 

acct-6.5 6.5 8749 27 127 

enscript-1.4.0 1.4.0 18162 52 180 

make-3.82 3.82 36397 58 474 

enscript-1.6.5.2 1.6.5.2 56491 107 488 

enscript-1.6.5 1.6.5 56494 107 488 

enscript-1.6.5.1 1.6.5.1 56494 107 488 

a2ps-4.10.4 4.10.4 57052 188 1104 

findutils-4.4.2 4.4.2 72384 314 1141 

radius-1.0 1.0 82029 196 1719 

dico-2.2 2.2 119592 332 2504 

cvs-1.12.10 1.12.10 144278 340 2027 

Total  727134 1893 11175 

Average  45446.9 118.3 698 
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Table 3.3 shows these 16 programs along with the three program size measures 

explained in Section 3.5.3.  In this table, the slices taken represent the number of forward 

slices over all possible criterions for each program. 

The performance programs were chosen to cover a wide range of programming 

styles (e.g., acct contains different related computations; ed has a single purpose).  Eight 

of these programs appear in Binkley’s studies [Binkley, Harman 2003; Binkley, Gold, 

Harman 2007] although they may be different versions. 

Net we will present data comparing slices from both slicers along with an 

investigation of the intersected slice using the performance benchmarks.   

3.5.3.4 Performance Benchmarks Results 

The results obtained by srcSlice and CodeSurfer for the performance benchmarks 

in Table 3.3 are given in Table 3.4.  Each row in the table is a benchmark we used for the 

comparison.  As seen in the last row of the table, the average slice size using both tools 

over all 16 programs included between 23.0% and 29.3% of the program source code.  

The range of the slice size coverage in the program for CodeSurfer is striking with an 

overall range from 16.8% for wdiff-0.5, to 57.7% for program ed-1.2.  srcSlice had a 

narrower overall range from 13.0% for which-2.2 to 38.1% for ed-1.6.   

Preliminary analysis does not indicate any trend relating program size and slice 

size using both slicers.  Smaller LOC (ed-1.2 with 3087) gives high percentages 

(CodeSurfer = 57.7%, srcSlice = 37.1%), and the larger LOC (wdiff-0.5 with 3874) gives 

low percentages (CodeSurfer = 16.8%, srcSlice = 14.5%).  The same thing occurs with 

programs ed-1.6 and which-2.2.  The program size is only one of the program attributes 



www.manaraa.com

55 

 

that potentially affects slice size, as the programming style (i.e., number of methods, 

global variables, pointers, etc.) also affect slice size. 

 

Table 3.4. Performance Benchmarks results and comparison of the CodeSurfer and 

srcSlice, slicing time measured in seconds, slice size measured in number of 

statements, (%) columns are the slice size relative to LOC. 

Program 

CodeSurfer srcSlice 

Slices 

Taken 

Slicing 

Time 

Slice 

Size 
% 

Slices 

Taken 

Slicing 

Time 

Slice 

Size 
% 

ed-1.2 4438 21.8 1782 57.7 516 4.4 1146 37.1 

ed-1.6 4527 19.9 1863 57.1 560 4.4 1241 38.1 

which-2.20 1429 15.2 736 20.5 203 4.3 465 13.0 

wdiff-0.5 1097 11.9 652 16.8 136 4.4 561 14.5 

barcode-0.98 4590 29.5 2177 41.8 451 4.5 1647 31.6 

acct-6.5 4983 47.5 2510 28.7 868 4.8 2193 25.1 

enscript-1.4.0 9456 71.1 5916 32.6 1139 6.0 3073 16.9 

make-3.82 17012 807 9446 26.0 3459 8.7 10703 29.4 

enscript-1.6.5.2 20234 184 12907 22.8 3043 11.8 10119 17.9 

enscript-1.6.5 20252 184 12913 22.9 3050 11.0 10126 17.9 

enscript-1.6.5.1 20252 185 12913 22.9 3050 10.8 10126 17.9 

a2ps-4.10.4 24493 393 14249 25.0 4119 13.9 9035 15.8 

findutils-4.4.2 23641 215 13689 18.9 7229 18.3 17298 23.9 

radius-1.0 38487 335 19218 23.4 7822 16.5 18287 22.3 

dico-2.2 52297 1763 28639 23.9 13012 22.7 30703 25.7 

cvs-1.12.10 74328 286328 40869 28.3 10116 26.5 30310 21.0 

Total 321516 290584 180479 
 

58773 173 157033 
 

Average 20094.8 19372 11279.9 29.3 3673.3 10.8 9814.6 23.0 

 



www.manaraa.com

56 

 

One way to see this is to take a look at the number of slices taken for both tools.  

For example in the two programs a2ps-4.10.4 and findutils-4.4.2, the slice size as a 

percentage are related directly to the number of slices taken by the CodeSurfer and 

srcSlice, as follows: in a2ps-4.10.4 the numbers of slices taken are 24493 and 4119, with 

slice percentages equal to 25.0% and 15.8%, respectively.  Moreover, in findutils-4.4.2 

the numbers of slices taken are 23641 and 7229, with 18.9% and 23.9%, respectively.  

Even though LOC size for findutils-4.4.2 program is larger.  As explained early the 

number of slices taken by CodeSurfer is related to the number of executable vertices in 

the SDG, for srcSlice related to the number of variables in the program.  

In general, the slice size produced by srcSlice is smaller than the one produced by 

CodeSurfer; however this is not the case in 3 out of 16 cases, i.e., make-3.82, findutils-

4.4.2, and dico-2.2.  The intersected slice results next will give us several hints why this is 

so.  

On a per-program and overall basis, srcSlice’s slicing time is very fast; the 

smaller programs took around four seconds (including the time to convert to srcML).  

This is an indication that the pre-computation strategy is successful at reducing slicing 

costs.  The slicing times for CodeSurfer range from ~11 to ~286,000 seconds, with the 

highest settings for precision used and are up to 19,000 times slower than srcSlice’s.  

However, CodeSurfer does produce a larger number of slices (~5.5 times more), which 

accounts for part of the slow down.  By excluding the larger program (cvs-1.12.10), 

CodeSurfer’s slicing time reduces to ~126 times that of srcSlice.   
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3.5.3.5 Slice Intersection Comparison 

We use the intersected slice as a measure of the quality of calculated slice.  As 

explained in Section 3.5.2, we feel that by intersecting our results to that of a CodeSurfer 

will minimally give us a baseline with respect to accuracy of the results.  That is, if our 

results are closer to that of the intersected slice we feel confident that it produces 

reasonably correct slices.   

The slices of selected files are generated using all possible slicing criterions with 

both tools, and then the intersection between corresponding slices is taken.  The 

intersected slices are generated for two performance benchmarks from Table 3.3 which 

are enscript-1.6.5 and findutils-4.4.2.  Those programs were particularly chosen to 

demonstrate the exceptions where the slice size differed drastically between the tools. 

The results of running the slicers on all possible criterions over 13 files of 

program enscript-1.6.5 are presented in Table 3.5.  In order to provide a better estimate of 

file size, the third column reports the number of non-blank non-comment lines of code as 

reported by sloc-count utility
4
.  In this case the results of the intersected slice are more 

reasonable since both slicers should return only source code statements (no comments no 

blanks).   

Focusing first on the slice sizes, it is apparent that for all slices srcSlice’s results 

are consistently smaller.  The average slice size for CodeSurfer and srcSlice is 69.0% and 

32.4%, respectively.  Upon closer examination, we observe that CodeSurfer produced a 

                                                 

4
 See http://www.dwheeler.com/sloccount/sloccount.html   

http://www.dwheeler.com/sloccount/sloccount.html
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higher safety margin (SM) on all slices than those produced by srcSlice.  CodeSurfer 

produced a maximum SM of 8.18% on the slice of afmlib/deffont.c file, and a minimum 

(close to the intersected slice) of 1.31% on the slice of afmlib/afm.c file.   

 

Table 3.5. Intersected Slice over 13 files from enscript-1.6.5, where (%) in the 

CodeSurfer (CS) and srcSlice (sS) columns is the slice size relative to LOC, (%) in 

the intersection column is the intersected slice relative to both tools slice size, (SM) is 

the relative safety margin for a slice, L = slice size in number of lines. 

enscript-1.6.5 

Size Slice Size Intersection 

LOC SLOC 

CodeSurfer  

(CS) 

srcSlice 

(sS) 
L 

CS 

% 

sS 

% File Name L % SM L % SM 

src\psgen.c 2860 1993 1351 67.8 1.75 863 43.3 1.12 771 57.1 89.3 

src\util.c 2156 1623 1227 75.6 1.48 853 52.6 1.03 827 67.4 97.0 

src\main.c 2660 1406 1178 83.8 1.59 768 54.6 1.04 739 62.7 96.2 

src\mkafmmap.c 250 153 92 60.1 2.04 45 29.4 1.00 45 48.9 100.0 

afmlib\strhash.c 386 268 145 54.1 1.36 145 54.1 1.36 107 73.8 73.8 

afmlib\afmparse.c 1017 759 636 83.8 2.05 313 41.2 1.01 310 48.7 99.0 

states\ex.c 2378 1536 813 52.9 3.35 279 18.2 1.15 243 29.9 87.1 

states\gram.c 2408 1607 433 26.9 2.41 301 18.7 1.67 180 41.6 59.8 

afmlib\afm.c 824 590 468 79.3 1.31 357 60.5 1.00 357 76.3 100.0 

afmlib\afmtest.c 184 113 67 59.3 1.60 42 37.2 1.00 42 62.7 100.0 

afmlib\deffont.c 379 323 311 96.3 8.18 38 11.8 1.00 38 12.2 100.0 

afmlib\e_88594.c 284 261 190 72.8 
 

0 0.0 
 

0 0.0 0.0 

afmlib\e_mac.c 284 261 219 83.9 
 

0 0.0 
 

0 0.0 0.0 

Total 16070 10893 7130 
  

4004 
  

3659 
  

Average 1236 838 548 69.0 2 308 32.4 1 281 52.8 91.1 

Min 184 113 67 26.9 1.31 0 11.8 1 0 12.2 59.8 

Max 2860 1993 1351 96.3 8.18 863 60.5 1.67 827 76.3 100 
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In contrast, srcSlice produces a maximum SM of 1.67% on the slice of 

states/gram.c file, and a minimum SM of 1% (identical to the intersected slice) on four 

files.  As shown, the slice size produced by srcSlice is consistently closer to the 

intersected slice.  The intersected slice size relative to the srcSlice’s and CodeSurfer’s 

sizes, in average are equal to 91.1% and 52.8%, with a maximum of 100% and 76.3%, 

respectively.  

The size of the intersected slice for the file afmlib/deffont.c was small (38 lines).  

In addition, the intersected slice size on files e_88594.c and e_mac.c from the same 

directory was zero.  A closer examination of the slices, particularly the two files 

e_88594.c, and e_mac.c with the same size 261 SLOC, shows that both files contain 258 

SLOC of array initialization values of the form {0x00, AFM_ENC_NONE}.  This 

indicates that imprecision with regards to large array initialization might be an issue.   

Because the CodeSurfer algorithm treats each element of an array as a distinct 

variable, [CodeSurfer], the slice sizes from CodeSurfer for these files were 72.8% and 

83.9% respectively.  This more precise approach requires complex dependence analysis, 

however this leads to unnecessarily large slices [Xu, Qian, Zhang, Wu, Chen 2005].  

In contrast, the srcSlice algorithm treats the entire array as a single variable, and 

the declaration of the array is detected and processed the same as a scalar variable.  That 

is, if the array is not referenced inside the file, then the slice size is zero.  The same 

senario occurs in the deffont.c file which contains a 262 SLOC array declaration.  The 

results of comparing the slices of the srcSlice, CodeSurfer, and the intersection on 13 

files from enscript-1.6.5 program are shown in Figure 3.6.   
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The results of comparing the slices of srcSlice, CodeSurfer, and the intersection of 

these slices on 10 files from the program findutils-4.4.2 are shown in Figure 3.7.  As can 

be seen, the srcSlice results are always closer to the intersected slice, except for the file 

find/defs.h.  In this case, the CodeSurfer slice size is only 1.7% of a 348 SLOC file as 

shown in Table 3.6.  However, we are unsure of the cause of the imprecision in 

CodeSurfer. 

 

Figure 3.6. Comparison of CodeSurfer, srcSlice, and the slice intersection over 13 

files from the program enscript-1.6.5 ordered by the size of slice intersection. The 

srcSlice was much closer to the slice intersection than CodeSurfer. 

 

Upon closer examination, we observe that srcSlice produced a higher safety 

margin (SM) on only one slice than the one produced by CodeSurfer.  For this particular 

file, srcSlice produced a maximum SM of 40.20% on the slice of find/defs.h file, and a 

minimum (close to the intersected slice) of 1% on the slice of gnulib/lib/exitfail.c file.  In 
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contrast, CodeSurfer produces a maximum SM of 2.35% on the slice of xargs/xargs.c 

file, and a minimum SM of 1% on gnulib/lib/exitfail.c file.   

 

Table 3.6. Intersected Slice over 10 files from findutils-4.4.2, where (%) in the 

CodeSurfer (CS) and srcSlice (sS) columns is the slice size relative to LOC, (%) in 

the intersection column is the intersected slice relative to both tools slice size, (SM) is 

the relative safety margin for a slice, L = slice size in number of lines. 

findutils-4.4.2 

Size Slice Size Intersection 

LOC SLOC 

CodeSurfer  

(CS) 

srcSlice  

(sS) 
L 

CS 

% 

sS 

% 
File Name L % SM L % SM 

gnulib/lib/exitfail.c 24 4 1 25 1.00 1 25.0 1.00 1 100 100 

find/defs.h 660 348 6 1.7 1.20 201 57.8 40.20 5 83 2.5 

find/util.c 1040 715 419 58.6 1.68 279 39.0 1.12 249 59 89 

xargs/xargs.c 1380 941 610 64.8 2.35 264 28.1 1.02 260 43 99 

find/find.c 1532 959 572 59.6 1.58 393 41.0 1.09 361 63 92 

gnulib/lib/getdate.c 3332 2366 1034 43.7 2.85 533 22.5 1.47 363 35 68 

find/tree.c 1655 1202 813 67.6 1.64 501 41.7 1.01 497 61 99 

locate/locate.c 1941 1374 914 66.5 1.69 548 39.9 1.01 541 59 99 

find/pred.c 2553 1816 1176 64.8 1.62 745 41.0 1.03 724 62 97 

find/parser.c 3544 2601 1746 67.1 1.57 1132 43.5 1.02 1109 64 98 

Total 17661 12326 7291 
  

4597 
  

4110 
  

Average 1766 1232 729 52 1.7 459 38 4.9 411 63 84 

Min 24 4 1 1.7 1 1 22.5 1 1 35 2.5 

Max 3544 2601 1746 67.6 2.85 1132 57.8 40.2 1109 100 100 

 

However, if we exclude the find/defs.h file, then the slice size produced by 

srcSlice is consistently closer to the intersected slice.  The intersected slice size relative to 
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the srcSlice’s and CodeSurfer’s sizes, in average are equal to ~84% and ~63%, 

respectively.  

So, If we exclude the find/defs.h file then the SM calculations using srcSlice will 

be as follows: average = 1.08, minimum = 1, and the maximum = 1.47.  And these results 

are closer to the slice intersection than CodeSurfer results. 

 

Figure 3.7 Comparison of CodeSurfer, srcSlice, and the slice intersection over 10 

files from the program findutils-4.4.2 ordered by the size of slice intersection. 

Except for a single file, the srcSlice was much closer to the slice intersection than 

CodeSurfer. 

 

3.6 Scalability of srcSlice 

This section demonstrates the scalability of our lightweight slicing approach.  We 

ran srcSlice over the Linux kernel to demonstrate that the approach is effective and 

scalable for large-scale systems.  For a recent version of the Linux kernel, srcSlice 
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computed slices for the slicing criterion (F, M, V) in 748 seconds and produced a system 

dictionary of 1,934,557 variables.   

The data used in this section originates from slicing 974 versions of the Linux 

kernel that have been released over the last 17 years (1994 - 2011) with a total lines of 

code of ~4.4 billion LOC, total slice size is ~2 billion LOC, and with an average slice 

size relative to system size of 46.0%.  The studied Linux versions are identified and 

ordered by their release date and sequence number (e.g., 1.1, 1.2, 1.3, etc.).  The dataset 

and Linux kernel structure is detailed in CHAPTER 4. 

The slicing approach builds a slice profile for each individual variable and then 

combines the output into a complete system dictionary.  This allows for efficient use of 

memory and computation, thus many scalability issues are avoided.  Additionally, the 

parsing of the code from srcML further avoids computationally intensive searches, since 

the stream reader pulls tokens from input srcML one after another as needed.  As such, 

very large systems can be sliced in a reasonable amount of time.  In other words, large 

increases of system size do not cripple our tool.  The first version of the kernel with 166 

KLOC takes 7 seconds.  Version 2.6.37.1 with ~13 MLOC takes approximately 13 

minutes. 

We now examine the slice size of our results, as this is considered to be a crucial 

issue [Binkley, Gold, Harman 2007], and therefore determines the main aspect of the 

quality of the generated slices.  Ideally, we want to generate the smallest correct slice.  

Any unrelated statements or variables avoided, will improve the quality of the slice.   
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Since the average slice size relative to LOC is 46.0%, we feel that our results are 

in a reasonable margin, based on the work by Binkley et al [Binkley, Gold, Harman, Li, 

Mahdavi 2006; Binkley, Gold, Harman 2007] and the results obtained in the previous 

chapter.   

Furthermore, the results given in Figure 3.8 represent the difference between the 

system size and the slice size, both measured in LOC, over 974 versions of the Linux 

kernel.  As can be seen the slice size increases proportionally with the system size.  Thus, 

the steady increase in the system’s behavior appears to be reflected in the increasing slice 

size.   

 

 

Figure 3.8. A comparison of the size of the srcSlice’s slices to the size of the Linux 

versions measured in MLOC, the x-axis is the version date. 
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3.7 Related Work 

Previously, in CHAPTER 2 we introduced program slicing and some of the key 

work on that topic.  Here we focus on slicing approaches directly related to our approach.  

We refer interested readers about the PDG based slicing approaches to Tip’s and Xu’s 

surveys [Tip 1995] and [Xu, Qian, Zhang, Wu, Chen 2005]. 

Gallagher et al [Gallagher, Lyle 1991] proposed the definition of decomposition 

slicing as a maintenance aid in order to capture all the computation related to a given 

slicing variable.  His objective was to define and isolate the parts of the code that are 

affected by the proposed change or modification of the slicing variable so he could 

eliminate the need for regression testing.   

The decomposition-slicing definition is used by Tonella [Tonella 2003] to 

construct a concept lattice of decomposition slices.  The idea was to combine the 

decomposition slice graph produced by Gallagher and the lattice program representation 

model.  The concept lattice of decomposition slices is used to support software 

maintenance by providing information about the computations performed. 

A lightweight slicing approach for object-oriented programs using dynamic and 

static analysis called dependence-cache slicing is proposed in [Ohata, Hirose, Fujii, Inoue 

2001].  This approach is based on dynamic data dependence analysis and static control 

dependence analysis.  In general, the slice construction process starts by locating the 

defined variables, and then extracts the data and control dependencies between statements 

that include those variables.  These dependencies are used to construct the PDG that is 

traversed backwards for a user given slicing variable.   
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In the context of maintaining large-scale systems, another lightweight 

maintenance tool, called TuringTool, was proposed by Cordy et al [Cordy, Eliot, 

Robertson 1990] was designed to support several maintenance tasks using the elision 

symbols.  These symbols are used for viewing large source programs on a small screen 

by providing source code projection.  The importance of this hierarchy view is clear since 

the user can focus at some point of interest inside the code to any required level of detail.  

For example, if the debugger is interested only in those statements that affected by the 

value of a given variable, then only those statements are displayed on the screen.  This is 

the same concept behind using the slicing tools. 

Since our approach is scalable in term of time and program size as shown Section 

3.6, the need was to evaluate the correctness of our results.  Our evaluation criteria was 

based at the study proposed by Hoffner [Hoffner 1995] in which he discussed several 

possible aspects to evaluate the performance of proposed slicing approaches.  These 

aspects are the slice size compared to the original size, and the time and space 

complexities.  The author compares a set of dynamic slicing tools, i.e., Kamkar’s and 

Spyder, with other static tools including the WPIS, FOCUS and Schatz’s tool.  Only three 

of the tools support inter-procedural slicing, which are Kamkar’s, Spyder and WPIS.  In 

addition, evaluation criterions were established for comparing these different tools.  In his 

evaluation, the slice size was measured using either the number of retrieved statements or 

the number of vertices in the PDG when comparable approaches are applied with similar 

languages.  Conversely, the author suggests that the code size is the best metric when 

these approaches handle similar languages.  In the context of complexity, the difficulty of 
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the approach is determined by the number of vertices in the intermediate representation 

models, and as a result the required execution time to complete the slicing process.   

Our approach is distinguished from this related work in multiple ways.  The 

method used is not PDG based.  There is no graph to traverse or data flow equations to be 

solved.  Only on-the-fly information is retrieved as needed.  Unlike most of the others, 

we do slicing over all the variables inside the system.  Our approach supports both system 

evaluation and comprehension by allowing the user to investigate the program by using 

the slices at different levels of granularities (e.g., variable, function, file, and system). 

3.8 Chapter Summary 

A method for efficient and scalable slicing was presented and compared to an 

existing tool.  The results demonstrated that the approach produces fairly accurate slices 

as compared to an existing tool and is highly scalable.  The limitations of the approach 

are related to deep aliasing and certain array indexing.  The srcSlice tool was shown to 

work on a variety of C programs and language features.  The approach uses the srcML 

format and toolkit.  As such, it can be applied to incomplete and non-compiling 

programs.  This is particularly useful when external libraries need to be excluded to 

reduce complexity.  Additionally, this feature is very useful for adaptive maintenance 

tasks involving new features or new API/libraries.   

In practice we see the usefulness of this and similar lightweight approaches being 

as a quick-check mechanism rather than a replacement for more heavyweight (and 

hopefully more accurate) slicing tools.  That is, developers can use this approach to judge 
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if it is prudent to expend the time and money to run a more rigorous analysis on a large 

software system.   

Moreover, the ability to slice multiple versions of large programs in a very short 

amount of time also opens up new avenues of research.  We can investigate how system 

slices change over the entire history of a large software system, and how slices reflect 

different types of changes occurring in a system possibly identifying refactoring changes 

[Pan, Kim, Whitehead 2006; Zhang, Gupta, Gupta 2007].  With current tools this is 

impractical.   

In the future, we plan to also investigate metrics based on program slicing in the 

context of coupling and cohesion. We also plan to make the srcSlice tool part of our 

srcML toolkit.  Currently, srcSlice also works for C++ programs but more evaluation is 

needed for a number of language features. 
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CHAPTER 4 

A CHARACTERIZATION OF MAINTENANCE ACTIVITIES IN LINUX 

KERNEL USING SLICE-BASED METRICS 

This chapter provides empirical support for investigating different possible slice-

based metrics.  These metrics are evaluated by using them to characterize and identify 

different types of maintenance activities, (i.e., corrective, perfective, and adaptive).  The 

metrics are also used to help verify Lehman’s laws of software evolution [Lehman 1980; 

Lehman 1996].   

To address this we first use the information of the forward slices generated from 

the Linux kernel to investigate and calculate different slice-based metrics (Section 5.2).  

We then use these metrics to build (Section 5.6) and validate (Section 5.7) a slice-based 

estimation approach for maintenance effort using statistical tests.  The assumption here is 

that the effort estimation is a model of code change and program slicers are valuable tool 

in determining the effects.  However, before using source-code slicing to measure source-

code changes, we should address the following maintenance research question: 

 RQ1: Do the slice-based metrics reflect the different maintenance activities? 

Before using statistical tests to build a maintenance-effort estimation model, the 

results of statistical tests require precise quantifiable definitions for Lehman’s laws of 

software evolution.  However, the results of such statistical tests depend on the test and 

dataset used.  Therefore, we address the following software evolution research question: 
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 RQ2: Are Lehman’s laws of software evolution supported using the slice-

based metrics? 

In order to answer the above two research questions, we conducted the following 

two analytical studies: 

1. Analysis of Lehman’s laws:  

To study the evolution of the Linux kernel in the slicing context, we plot various 

potential slice-based metrics as a function of time, as suggested by [Godfrey, Qiang 

2000].  Then we use a simple visual inspection to comment on observed patterns.  Our 

objective is to examine weather Lehman’s laws are reflected in the evolution of the Linux 

kernel based on calculated slice-based metrics.   

Even though, the growth of the Linux kernel was studied in the literature by 

[Godfrey, Qiang 2000] who studied the growth of the Linux kernel over its first six years 

(1994 - 2000).  And by Israeli et al [Israeli, Feitelson 2010] who verified Godfrey’s 

results using a much larger data set, i.e., he examined the growth of the Linux kernel over 

its first 14 years (1994 - 2008) with a total of 810 releases.  However, in our work we 

want to verify these results using a larger data set (1994 - 2011) and using different 

metrics that have not been used before in this context, e.g., slice-based metrics. 

2. Analysis of maintenance activities:  

To establish whether slice-based metrics can be used to distinguish between the 

different types of maintenance activities, we will collect data and calculate various slice-

based metrics for different versions and groups of directories.  For example, we will 

compare consecutive stable versions of Linux kernel and consecutive development 
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versions to ascertain whether slice-based metrics can be used to differentiate between 

corrective and perfective maintenance activities.  These metrics are then compared to 

traditional measures of code effort, e.g., LOC. 

Our goal is to use the many versions of the Linux kernel to characterize the 

different types of maintenance activities.  Based on the structure of the Linux releases (as 

will be discussed in Section 4.1.1), we expect corrective maintenance to be reflected in 

consecutive versions of stable kernels.   

Perfective maintenance (as it pertains to the addition of new features) is expected 

to be reflected in consecutive versions of development kernels.  Again, this matches the 

structure of the Linux versions; we can assume that consecutive versions in the 

development kernels will be perfective.   

Adaptive maintenance is expected also to be reflected in development versions.  

However we expect it to be reflected in specific directories in the development kernels.  

For example, those directories encapsulate most of the interactions of the system with its 

environment, in other words, the location for code that handles interaction with the 

environment.   

Preventative maintenance is much harder to be identified, since is related to code 

reorganization.  We expect this type is reflected in the events that partition, delete, or 

move source code files mainly in the development kernels.  The assumption here that this 

type of maintenance activity is related directly to code reorganization and therefore could 

be identified, for example, by the changes in the number of directories. 
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The data used in this chapter originates from slicing 974 versions of the Linux 

kernel that have been released over the last 17 years with a total of ~4.4 billion LOC.  We 

examined all the Linux releases from March 1994 to February 2011.  This includes 159 

stable versions (1.0, 1.2, 2.0, 2.2, and 2.4), 397 development versions (1.1, 1.3, 2.1, 2.3, 

and 2.5), and 418 versions of 2.6 (up to release 2.6.37.1).  This represents a significant 

extension of the work of [Godfrey, Qiang 2000] and [Israeli, Feitelson 2010], who’s 

cutoff date was January 2000 and August 2008, respectively.  

4.1 Background  

In this section we provide some background regarding the Linux kernel, 

Lehman’s laws of software evolution, and software maintenance activities. 

4.1.1 Structure of the Linux kernel 

The GNU Linux kernel operating system was developed originally and announced 

on the Internet by Linus Torvalds in August 1991.  After that, a community of developers 

developed and released the first production version in March 1994.  

The studied Linux versions are identified and ordered by their release date and 

sequence number.  The Linux versions are classified as stable and development versions.  

Each major version includes several releases identified with either a three or four digit 

numbering scheme.  The first digit represents the generation, i.e., Linux has three 

generations, initially with generation 1 released in 1994, generation 2 released in 1996, 

and generation 3 started in 2011 (not part of the dataset).  The second digit represents the 

major kernel versions either even or odd.  Up until major version 2.4 even digits (i.e., 1.0, 
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1.2, 2.0, 2.2, and 2.4) corresponded to stable versions, whereas odd numbers (i.e., 1.1, 

1.3, 2.1, 2.3, and 2.5) corresponded to development versions, those versions used to test 

new drivers and features which leading up to the next stable version. 

The third digit is the minor kernel version number used to distinguish new 

releases in both stable and development versions. That is, new minor numbers of stable 

versions hypothetically included only security patches and bug fixes, whereas new minor 

numbers of development versions included new (however not fully tested) 

feature/functionality.  However, in August 2004 this numbering scheme was changed 

affecting all the versions released after this date.  A fourth digit number was added 

starting with version 2.6.8.1, after that the third number in a version indicates the 

development of new functionality, and the presence of a fourth number represents bug 

fixes and/or security patches [Koren 2006].  As a result, kernel 2.6 combines stable and 

development versions.  But, it is actually more like a development version given that new 

feature is released with relatively little testing [Israeli, Feitelson 2010]. 

By analyzing the Linux kernel, the kernel sources are arranged in several 

subdirectories, the main ones are as follows: 

 arch: this subdirectory contains all the kernel source code that specified for 

different special processor architectures, in which each one supported by 

different subdirectories (e.g., alpha, i386, mips, sparc, etc.). 

 init: contains the initialization source code for the kernel. 

 mm: contains all the memory management source code for the kernel. 
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 fs: contains the file system source code, such as each supported file system 

has one subdirectory.  For example, Linux supported many file systems such 

as: nfs, ntfs, fat, etc. 

 net: contains the networking source code of the kernel. 

 lib: contains the library source code of the kernel. 

 ipc: contains the inter-process communication source code. 

 drivers: this directory contains source code of all the system’s device drivers. 

This directory is further divided into subdirectories depending on the source 

code of device driver it contains.  

 kernel: this directory is one of the most important directories in kernel.  It 

contains the main kernel source code. 

 include: contains the include files (e.g., header files) needed to build the 

kernel source code.  Along with the kernel directory this directory also is very 

important for kernel development. 

 

A summary of the dataset from the first version 1.0.0 released in March 13, 1994 

up to version 2.6.37.1 released in February 17, 2011 is given in Table 4.1.  Also included 

are statistics related for each version, including the number of source code files in the 

system (i.e., “.h” and “.c” files), the LOC of each version, the slice size, the slicing time, 

and the program/slice ratio.  The total slice size is ~2 billion LOC, with an average slice 

size relative to LOC of 46.0%. 
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Table 4.1. Linux Version data, 11 major versions with 974 individual versions, 

(RSN) = release sequence number, slice size measured in LOC, slicing time 

measured in seconds, (%) is the slice size relative to LOC, (R) = number of releases 

in each major version, (S) = stable version, (D) = development version. 

Version Version 

Type 

RSN R Size Slice Size % Date Slicing 

Time 
Files LOC 

1.0 S 1.0.0 1 487 166,144 83,891 50.5 % 3/13/94 7 

1.1 D 1.1.0 36 487 165,768 83,696 50.5 % 4/6/94 7 

1.1.95 766 283,492 134,458 47.4 % 3/2/95 12 

1.2 S 1.2.0 14 766 283,522 134,446 47.4 % 3/7/95 12 

1.2.13 765 287,104 136,293 47.5 % 8/2/95 12 

1.3 D 1.3.0 100 832 312,214 150,199 48.1 % 6/12/95 14 

1.3.100 1,551 655,774 305,404 46.6 % 5/10/96 29 

2.0 S 2.0.0 41 1,603 677,958 312,861 46.1 % 6/9/96 31 

2.0.40 1,884 913,716 423,324 46.3 % 2/8/04 41 

2.1 D 2.1.0 133 1,618 698,027 324,136 46.4 % 9/30/96 31 

2.1.132 3,732 1,515,441 695,857 45.9 % 12/22/98 47 

2.2 S 2.2.0 27 3,775 1,611,328 704,428 43.7 % 1/26/99 47 

2.2.26 4,874 1,615,056 741,157 45.9 % 2/24/04 47 

2.3 D 2.3.0 52 3,857 1,621,440 744,060 45.9 % 5/11/99 48 

2.3.51 5,450 2,911,206 1,330,584 45.7 % 3/11/00 76 

2.4 S 2.4.0 76 6,742 2,978,667 1,361,262 45.7 % 1/4/01 79 

2.4.37.11 10,629 3,614,387 1,650,357 45.7 % 12/18/10 177 

2.5 D 2.5.0 76 8,196 3,633,072 1,658,854 45.7 % 11/23/01 180 

2.5.75 12,412 4,452,342 2,031,419 45.6 % 7/10/03 301 

2.6 S&D 2.6.0 418 12,424 4,476,542 2,042,424 45.6 % 12/18/03 309 

2.6.37.1 28,766 13,840,130 6,300,536 45.5 % 2/17/11 748 

 

 

4.1.2 Categories of Software Maintenance  

In software engineering the software evolution dynamics is the study of the 

processes that include both developing the software initially then updating it for various 

reasons.  This updating process is called software maintenance, which defined in the 
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literature as one of the five primary life cycle processes that may be performed during the 

life cycle of software.  The software maintenance represents all the modification 

activities (e.g., source code change) made to the software product after its first 

installation that follows the operational development process.  The ratio of these changes 

is generally accepted by the software community to be around 70% [Lehman 1980; Sage, 

Palmer 1990; Israeli, Feitelson 2010].  Generally during evolution, these maintenance 

activities are implemented by modifying existing components and adding new 

components to the system (e.g., fixing a bug or adding a new feature). 

The system maintenance activities was categorized initially by Swanson in 1976 

[Swanson 1976] into three categories such as: corrective, adaptive, and perfective.  Later 

these categories have been updated to four categories and presented in ISO/IEC 14764 

[ISO/IEC 1999] standard and [Chapin, Hale, Kham, Ramil, Tan 2001] as follow: 

1. Corrective maintenance: deals with correction of discovered problems that 

prevent the software to be at the operational state and meets its requirements. 

2. Adaptive maintenance: adapting the software after delivery to changing internal 

needs within the original environment so that it operates in a different 

environment.  

3. Perfective maintenance: this type of maintenance to add to or modify the 

system’s functionality after delivery, for example the performance or reliability 

of the system may have to be improved by modifying the software to be able to 

meet external evolving user needs (e.g., improve performance or 

maintainability, adding new features).  
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4. Preventative maintenance: this type of maintenance deals with the modification 

of software after delivery to detect and correct faults before they become 

effective faults.  

An important issue is the maintenance effort spent in the different types of 

maintenance activities.  Studies [Swanson 1976; Sage, Palmer 1990; Israeli, Feitelson 

2010] show that the total maintenance effort spent among these four types of 

maintenance activities is distributed as follows (taking into consideration that the 

maintenance effort is influenced with a variety of factors, such as system age, system 

quality). 

 55% Corrective,  

 20% Adaptive,  

 20% Perfective, and  

 5% Preventative. 

In CHAPTER 5, we will attempt to estimate the effort involved with a new Linux 

version using a variety of different slice-based and traditional code-based metrics.  One 

group consists of measures of source code changes, including the slice changes, number 

of files and functions contain modified slices, and the relative slice coverage of the 

program size.  These measures are based on the Linux source-code slices.  Yet other 

types of metrics are time spent in development/maintenance process, the rate of new 

versions, lines of code, and number of files.  These measures will be used also and their 

results will be compared with slice-based metrics. 
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Here in this chapter, our objective is to be able to specify whether maintenance 

activity is corrective, adaptive, perfective, or preventative by examining changes in an 

appropriate slice-based and traditional code-based metrics.  Particularly, we will compare 

consecutive stable versions of Linux and consecutive development versions to establish 

whether slice-based and usual code-based metrics can be used to distinguish between 

corrective and perfective maintenance activities, respectively. 

4.1.3 Lehman’s Laws of Software Evolution 

The laws of software evolution are a set of empirically derived observations that 

were originally proposed by Lehman in 1974.  The laws, their early development, and 

detailed discussion of their nature and implications are discussed in details in [Lehman 

1980; Lehman, Ramil, Wernick, Perry, Turski 1997].  The laws and their implications are 

explained in Table 4.2. 

Lehman’s laws of software evolution explain the forces that driving new 

developments on the E-type software system on one hand, and the forces that slow down 

the development progress on the other hand.  Lehman used the keyword E-type to refer to 

the real-world systems.  He describe these systems as they evolving in a way that cannot 

be specified in advance, however they are modified in response to a new user 

requirements or change requests.   

The first law (Continuing Change) summarizes the observation that large systems 

are never completed; they just continue to evolve to stay useful.  As the system evolving 

changes, these changes causing growth in the system size (the sixth law Continuing 

Growth), and its structure tends to be more complex (the second law as Increasing 
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Complexity) unless work is done to reduce it.  However, the process of evolution is 

prompted when the user perceives a decrease in quality (the seventh law Declining 

Quality).  In addition, the laws also state that the development changes have effect within 

an environment that forces stability (its rate of development statistically invariant) and a 

rate of change that permits the organization to keep up (the fourth and fifth laws of 

Conservation of Organizational Stability and Conservation of Familiarity, respectively).  

Finally, in order to maintain the familiarity and stability, the evolution process of the 

system should be a self regulating process and must be treated as a feedback system 

incorporating multi-level, multi-agent,multi-loop feedback systems (the thired and eighth 

laws of Self Regulation and Feedback System, respectively). 

Since, these laws are believed to observe all the changes during the software 

evolution process, empirical studies were provided to support the laws using the changes 

of the system size over time [Lehman, Ramil, Wernick, Perry, Turski 1997; Lehman, 

Perry, Ramil 1998; Lehman, Ramil, Perry 1998].  However, some empirical observations 

of studying the development of open-source systems appear to challenge some of 

Lehman’s laws [Godfrey, Qiang 2000; Godfrey, Qiang 2001; Capiluppi, Lago, Morisio 

2003] since the laws are believed to apply mainly to strictly managed and closed-source 

code systems [Israeli, Feitelson 2010].  In addition, there is no broad support exists for all 

the laws across different empirical studies of open-source systems.   

Unlike all of others we will try to validate Lehman’s laws using slice-based 

metrics, and using the largest number of Linux versions over a longer span time. 
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Table 4.2. The Lehman's laws of software evolution as proposed by Lehman 

[Lehman, Ramil, Wernick, Perry, Turski 1997]. 

NO. Law Statement 

1 

Continuing  

Change 

An E-type system must be continually adapted; else it becomes 

progressively less satisfactory in use. 

2 

Increasing  

Complexity 

As an E-type system is changed its complexity increases and 

becomes more difficult to evolve unless work is done to maintain 

or reduce the complexity. 

3 

Self  

Regulation 

Global E-type system evolution is feedback regulated. 

4 

Conservation of 

Organizational 

Stability 

The work rate of an organization evolving an E-type software 

system tends to be constant over the operational lifetime of that 

system or phases of that lifetime. 

5 

Conservation  

of Familiarity 

In general, the incremental growth (growth rate trend) of E-type 

systems is constrained by the need to maintain familiarity. 

6 

Continuing  

Growth 

The functional capability of E-type systems must be continually 

enhanced to maintain user satisfaction over system lifetime. 

7 

Declining  

Quality 

Unless rigorously adapted and evolved to take into account 

changes in the operational environment, the quality of an E-type 

system will appear to be declining. 

8 

Feedback  

System 

E-type evolution processes are multi-level, multi-loop, multi-

agent feedback systems. 
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4.2 Measurements of the Linux kernel 

Most of existing studies on software evolution use different metrics to 

demonstrate their point.  In general, there are process metrics that measures the 

development process (e.g., methodology, development time, the experience of the 

programmers), and product metrics that measures the system at any stage of its 

development (e.g., size of the program).  Next we will focus on product metrics, 

specifically the slice-based metrics.  We will display and discuss our slice-based results, 

also compare them to those of traditional code-based measures.  

To observe the changes in traditional metric values and slice-based metric values 

from one version to the next, we typically graph the results for all 974 versions.  For each 

of the figures, and throughout this chapter, the x-axis of the graphs represents the release 

date, and the indication near the lines shows the corresponding Linux kernel version.  We 

make a distinction between the stable versions (1.0, 1.2, 2.0, 2.2, and 2.4), the 

development versions (1.1, 1.3, 2.1, 2.3, and 2.5), and the 2.6 series using different 

colors. 

4.2.1 System Size 

The size of a system could be measured in different ways.  We start by 

considering the number of lines of code (LOC), and the number of files.  A line of code 

(LOC) is one of the most used metric in the literature.  However, the problem is the 

definition, such as, is there a need to collect the commented and empty lines to the code 

statements.  On one hand, we are interested with the code itself, so it seems that only the 

executable statements interest us.  On the other hand, the number of comments affects the 
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understandability of the source code and consequently its maintainability and the empty 

lines affect the readability of the source code. 

 

 

Figure 4.1. The growth of LOC in 974 versions of Linux kernel. 

 

Figure 4.1 shows the growth in the code lines as total lines in the file (measured 

using wc –l Linux command).  Based on the structure of the Linux kernel as explained in 

Section 4.1.1, we see here that most of the growth occurs in the development versions, 

whereas the stable versions are usually steady, except for some increase at the beginning.  

For example, the development versions 1.2, 2.0, 2.2, and 2.4 are exhibits an increase at 

the beginning years of development, and this is particularly noticeable in version 2.2.  

This extraordinary behavior in the first years of development of stable versions will be 

discussed in detail below.  The version 2.6 includes a combination of the development 
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and stable versions.  For each release (new third digit) the number of lines of code is 

constant as in stable versions, but it grows between them as in development versions.  

An interesting observation is that the pattern of growth sometimes exhibits large 

jumps in select points.  For example, a closer investigation of Figure 4.1 (see Figure 6.2 

in APPENDIX C for more details about the growth of each version individually) we can 

distinguish two large jumps as follows: the first jump in version 1.2 (from 284919 to 

286632 LOC) between release 1.2.7 and release 1.2.8.  The second jump in version 1.3 

(from 574310 to 641932) between releases 1.3.92 and 1.3.93.  Both jumps will be 

explained next when we consider the growth using the number of files metric.  

Figure 4.2 shows the growth in number of files in Linux (for more details of this 

figure see Figure 6.1 in APPENDIX C).  Overall, we see a similar growth trend to that of 

LOC.  That is, they are increasing over time in development versions and usually steady 

in stable versions, with the same special cases of initial growth in stable versions.  

However, some details are different.  For example, there is a little increase in the 

beginning in versions 2.0, 2.2, and 2.4.  In addition, the large jump of LOC in version 1.2 

is disappeared for the number of files; instead the growth trend is consistently stable with 

just one file decrease in release 1.2.7.  That is, the number of files from release 1.2.0 to 

release 1.2.6 is always consistent and equal to 766 files, then after that is decrease to 765 

(release 1.2.7) files for all subsequent versions.   
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Figure 4.2. The growth of the number of files in Linux. 

 

The best way to explain this phenomenon by combining this information with the 

general LOC (Figure 4.1), specifically, by relating the jump occurs in the LOC value 

inside release 1.2.8 to the removed file in the previous (1.2.7) release.  We find the 

following: the large increase in the LOC value in release 1.2.8 corresponding directly to 

the deleted file in release 1.2.7.  This is an example of the effect of reorganization of the 

code since it was caused by the deletion of only one source file and the lines of source 

code (LOC) is not deleted. 

The second jump in the LOC value in version 1.3 supports the evidence of the 

above phenomenon.  The LOC’s large increase in release 1.3.93 caused the large increase 

in the number of files in release 1.3.94 (from 1389 to 1544 files).  In other words, the too 

0

5

10

15

20

25

30

Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Jan-08 Jan-10 Jan-12

Th
o

u
sa

n
d

s

v1.1v1.2 v1.3
v2.0

v2.1 v2.2
v2.3

v2.4

v2.5

v2.6



www.manaraa.com

85 

 

much LOC increased in release 1.3.93 necessitate developers to reorganize this large 

amount of code by adding 155 new files to release 1.3.94. 

Another interested observation in the growth of number of files that the growth 

trend in versions 2.2 and 2.4 exhibits significant growth in the number of files than LOC.  

We can see that the growth in the number of files in both versions was relatively larger 

than that of LOC, meaning that the growth in number of files is continually increases as 

much code is added first then this code is reorganized by adding new files.  However, as 

our aggregate metrics results demonstrate in the next section, we can obtain several hints 

that indicate the above results.  The average LOC and Slice size per file results indicate 

that the growth trend of versions 2.2 and 2.4 is decreasing over time, so that the growth of 

number of files is larger than the growth of LOC and slice size. 

In the growth of number of files, we also see the same behavior of version 2.6 as 

in LOC.  Each minor version growth is somehow steady, but all together there is a super-

linear growth trend (see Figure 4.3). 

4.2.2 Slice Size   

The literature is full of software metrics that quantifies the complexity of a 

system.  However, many existing software metrics are computed only using syntactic 

information of the code and use that to model semantic information.  For example, 

cyclomatic complexity [McCabe 1976] quantifies the semantic complexity of a program 

as the number of independent paths in the program’s control flow graph.  Semantic 

information is much more difficult to derive and model.  For example, a semantic change 

in one function might create a ripple effect among other functions.  In a semantic 
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complexity context, program slicers often applied and are helpful tool in determining side 

effects. 

By slicing the versions of the Linux kernel we observed that in general the growth 

of the slice size over time has clearly related trend about the maintenance activity being 

made.  That is, most of the growth occurs in the development versions, whereas the stable 

versions are usually steady, except for a little increase at the beginning, they are continue 

slowly to increase later on. 

On overall basis, from Figure 3.8 in Section 3.6 (which compares the Linux 

source code size with the slice size) it is clear that the growth in the development versions 

is fairly often larger than in stable versions.  However, it is not visually noticeable what 

the growth pattern inside each individual version.  For this reason, Figure 4.5 shows the 

growth in the slice size for 10 major versions (from version 1.1 to version 2.6) of the 

Linux kernel with a total of 974 releases (version 1.0 is combined with version 1.1 since 

it contains just one release).  For each individual version in this graph we plot the slice 

size as a function of time as we did in both LOC and number of files.   

In general, the results as shown in Figure 4.5 indicate that the slice size grows 

with time, and the pattern of growth is very similar to that of the number of files except 

for version 1.2 that has a growth pattern similar to that of corresponding version in LOC.  

In version 1.2 there is a slow increase at the beginning then a jump in the slice size in 

release 1.2.8 (853 LOC increased).  This is happened as mentioned above due to a 

deletion of one file in the previous release 1.2.7. 
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The slice size as a semantic complexity metric shows that there is an increase in 

the complexity over time.  However, the growth trend is more sable and less volatile than 

of the growth in LOC.  For example, in version 1.3 (specifically release 1.3.58) the large 

increase in the LOC value ~100 KLOC is corresponding to just an increase in the slice 

size of ~ 4500 LOC, thus the slice size relative to LOC (slice coverage metric explained 

next) is reduced from 45.7% in release 1.3.57 to 38.2% in release 1.3.58. 

 

 

 

 

 

 

     

 

 

An interesting observation captured in literature studies [Lehman, Ramil, 

Wernick, Perry, Turski 1997; Godfrey, Qiang 2000] is that the typical rate growth of the 

Linux kernel is a sub-linear (see Figure 4.3).  However, Godfrey et al [Godfrey, Qiang 

2000] mentioned that the Linux grows is at a super-linear rate.  

In order to characterize the shape of the growth in the slice size (e.g., linear, 

super-linear, etc.), we use the two growth models shown in Table 4.3.  We can see that 

using the R
2
 value (definition in the next chapter) that the best fitting model for the 

 

 

Figure 4.3. Three different types of growth rate. 
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development versions (1.1, 1.3, 2.1, and 2.3) is the exponential model, also versions 2.4 

and 2.6 since as we discussed above these versions start with new numbering schema, 

thus those two versions include the two types of versions (stable and development).  In 

contrast, the trend growth at the stable versions (1.2, 2.0, and 2.2) is best fitted by the 

linear model, the exception for version 2.5 that is considered a development version. 

However, the overall growth of the slice size in Linux kernel is shown to follow the 

super-linear growth as shown in Figure 4.4. 

In both models, the dependent variable represents the slice size, and the 

independent variable represents the version release date.   

 

 

Figure 4.4. Growth rate in Linux kernel using slice lines. 
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Figure 4.5. The Linux-kernel slice size measured in LOC, 10 major versions. 

 

Next, we calculated LOC and slice size at the file level.  That is, averaging the 

values over the number of files.  When comparing the averages per file we see the 

following picture: the most obvious observation regarding the average size of files as 

shown in Figure 4.6 is that the average sizes are similar in both LOC and slice size, but 

with relatively large fluctuations and jumps in LOC.  That is, the average size of files is 
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somewhat volatile and more striking using LOC, but much smaller and more stable in 

slice size. 

 

Table 4.3. Two models summary for 10 major versions with 974 subversions of the 

Linux kernel, dependent variable is the slice size, independent variable is the 

version release date. 

Linux kernel 

Version 

Models R
2
 values 

P-value 
Linear Exponential 

1.1 0.95 0.97 <0.001 

1.2 0.95 0.94 <0.001 

1.3 0.92 0.96 <0.001 

2.0 0.81 0.80 <0.001 

2.1 0.97 0.98 <0.001 

2.2 0.87 0.86 <0.001 

2.3 0.97 0.99 <0.001 

2.4 0.96 0.97 <0.001 

2.5 0.99 0.98 <0.001 

2.6 0.91 0.94 <0.001 

 

 

Generally, by comparing this information (Figure 4.6) with the growth in LOC 

(Figure 4.1) and the growth in number of files (Figure 4.2), we find the following.  The 

LOC and number of files were increasing the whole time, and increasing between 

versions, and here we find also decrease, a much more volatile growth-trend and a 

sometimes a higher increase for stable versions.  In common, the growth is not smooth 

and the changes between successive versions could be large, since the number of files 

and LOC added is different in each version, also there is an update for existing code. 
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Figure 4.6. The average LOC and slice size per file. 

 

Note that the graph of average LOC and slice size per file (Figure 4.6) is generally 

more volatile than those of total LOC (Figure 4.1), or number of files (Figure 4.2).  The 

reason is that the average LOC and the average slice size are the quotient of two other 

metrics (e.g., average slice size per file is equal to: slice size / number of files), and while 

all of these metrics generally grow, the relative rates of growth may fluctuate.  However, 

there are some patterns do emerge.   

For example, an interesting finding is that for the stable version series 2.0 the 

initial growth is much higher than of successive development versions, indicating that the 

growth in LOC and slice size was larger than in number of files.  The meaning of this is 

that each file, on average, has gained more LOC.  In version 2.6, the average LOC or 
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slice size per file (per subversion not overall) is decreasing with time indicating that the 

number of files is growing faster than the LOC and slice size. 

Finally, looking at each of the graphs, LOC and number of files separately 

exposes only a small part of the evolution story, i.e., we just see an increase and we can 

say that Linux kernel is constantly growing.  However, when we look at the averages we 

see a noticeable change per file.  For example, in version 1.3.58 we see a small increase 

in number of files, but a very large increase in LOC and thus a large increase in the 

average LOC per file.  The cause of this is addition of only 7 files (from 1157 to 1164) 

with total of over 100 KLOC (from 463795 in the release 1.3.57 to 567594 in the release 

1.3.58); the jump is especially visible when looking at the growth for the LOC per file or 

LOC. 

The slice size as discussed above quantifies the semantic complexity of a 

program, and the LOC quantifies the syntactic complexity of a program.  We calculated 

the difference between LOCs, and the difference between the slice sizes for each two 

consecutive versions.  Then these differences, which represent the amount of growth on 

both the LOC and slice size between two versions, are averaging over the time duration 

(measured in days) between two versions. 

From Figure 4.7 and Figure 4.8 we can see that the average LOC and slice size 

growth is large in version 2.6.  However, the growth in other versions is not noticeable 

since the growth in version 2.6 spread on an extremely large area, thus the graph is very 

compact and we miss some sharp drops in values because of this.  Therefore, we choose 

to draw both graphs with the average values of LOC and slice size in a logarithmical 
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form as shown in Figure 4.9 and Figure 4.10, respectively, the logarithmical base here is 

10. 

 

 

Figure 4.7. The average LOC growth per day measured in KLOC. 

  

The graphs show that the pattern of growth is very similar between LOC and slice 

size.  The results show that the average LOC and slice size growth per day have the 

highest values in the development versions (1.1, 1.3, 2.1, 2.3, and 2.5) than stable 

versions (1.2, 2.0, 2.2, and 2.4).  The results indicate a pronounced increase and relatively 

large values over time in the development versions and a decrease, smaller, and more 

stable in the stable versions.  That is, the average LOC and slice size growth per day 

within development versions tend to have much higher values, meaning the development 

versions gained more LOC than stable versions. 
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In version 2.6 the values are fluctuating since the 2.6 series demonstrates both 

development and stable versions, but the average values for both LOC and slice size are 

always the highest values. 

 

 

 

Figure 4.8. The average slice growth per day measured in KLOC. 
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Figure 4.9. Average LOC growth per day measured in KLOC (logarithmic scale). 

 

 

Figure 4.10. Average slice growth per day measured in KLOC (logarithmic scale). 
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Now, we looked at the slice size relative to LOC (Figure 4.11), which is 

interesting since this average percent of the slice size represent the “slice coverage” 

proposed originally by Weiser [Weiser 1981] then formulated by Ott et al [Ott, Thuss 

1993] over modules as a comparison of the length of the module’s slice to the length of 

the module.  Here we extend this definition over the entire version (the version slice size 

divided by the system size both measured in LOC).  The results as shown in Figure 4.11 

indicate a small decrease over time (17 years) in the development versions than stable 

versions, especially in the early development versions (1.1, 1.3, 2.1, and 2.3).  This gives 

the impression that with time the average complexity of the source code is decreasing, 

and thus maybe the quality of the Linux kernel is improving.  

 

 

Figure 4.11. The percentages slice size relative to LOC over 10 major versions of 

Linux kernel. 
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4.3 Analysis of Maintenance Activities  

In this section, we use the above results to reflect and characterize the four types 

of maintenance activities; which are corrective, perfective, adaptive, and preventative. 

4.3.1 Stable and Development Versions 

As we mentioned above, we expect the development versions of the Linux to 

reflect perfective type of maintenance activity, whereas stable versions reflect corrective 

type of maintenance.  This is based on the structure of these two types of branches of the 

code, which are maintained in parallel to each other.  However, it seems that in practice 

this division was not always followed. 

An example of extreme mixing of the roles of the versions arises at the beginning 

of version 2.4.  A closer investigation shows that the last release of version 2.3 was 

released on March 11
th

, 2000.  The first release of version 2.4 was released on January 

4
th

, 2001. And the first release of version 2.5 only on November 23
rd

, 2001.  Therefore, 

there is a gap of some 20 months between consecutive development versions (i.e., 2.3 and 

2.5).  However, it seems that the early fraction of version 2.4 reflected development 

activity that was being made without officially released in a new development version. 

The other gap of ~10 months is between version 2.3 and version 2.4 seems to 

have been filled (at least partially) by version 2.2, since this version exhibits a strong 

growth in this time period. 
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4.3.2 Time-Intervals between Versions 

As we have seen from all the graphs above and based on the structure of the 

Linux kernel, it seems that the growth trend follows a consistent pattern: a new 

development version is released after a number of releases of stable version, and after 

there are no more releases in that development version, a new stable version is released.  

However, during the time interval and releases of the stable version there are still releases 

of the previous stable version.  For example, version 2.0 had continues releases until the 

end of version 2.2. 

In this context, we examined the intervals of time between consecutive releases 

(measured in days) inside the same major version.  Figure 4.12 displays the raw data of 

the intervals for each version, and Figure 4.13 shows the statistics (median and 25
th

, 75
th

, 

and 95
th 

percentiles) of the intervals for each version.  Notice that in Figure 4.13 versions 

2.0, 2.2, and 2.4, the 95th percentile values exceed the top of the graph and their true 

values are appear on the labels above their up-bar boxes.   

Looking at Figure 4.12 we can see an interesting pattern such as, generally the 

development versions have very low values, and so do version 2.6, while the stable 

versions have much higher values.  We also notice that at the end of any development 

version (red line) there is almost a simultaneous beginning of a new stable version (blue 

line), the exception here we do see a significant gap between versions 2.3 and 2.4, and 

between versions 2.5 and 2.6.  Those two gaps are results of the structural changes in the 

Linux kernel numbering scheme.  
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Figure 4.12. Intervals between version’s releases measured in days. 

 

Figure 4.13. Statistics of intervals between releases, within major version measured 

in days (ordered as: 25
th

, median, 75
th

, and 95
th

 percentile). 
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Looking at Figure 4.13 we can notice that the bodies of the up-bars of the stable 

versions are usually higher than those of the development versions.  In addition, the high 

values and the variance are usually higher in stable versions.  In other words, we can see 

that the stable versions are released less frequently, while development versions are 

released quite often.  For example, all medians, 25th, and 75th percentiles in development 

versions are lower than 10 days.   

In conclusion, releases of stable versions are less frequent and usually on a 

weekly to monthly basis, however releases of development versions are very frequent and 

are on a daily to weekly basis.  The interval wait between stable versions was a year and 

more, and with development versions we find a much faster and more stable release rate. 

4.3.3 Corrective Maintenance  

We analyze the corrective maintenance as reflected in consecutive versions of 

stable kernels.  The assumption here that changes in successive versions of stable kernels 

are usually corrective, due to the structure of the releases in Linux kernel as indicated 

previously in Section 4.1.1.  

As we have seen in the results above (Section 4.2), for each of the different 

metrics we calculated (e.g., LOC, number of files, slice size, etc.) the values of these 

metrics are fairly often constant for the stable versions.  This is seen in versions 1.2, 2.0, 

2.2, and 2.4, and also in each of the subversions of version 2.6.  However, the metrics 

values in stable versions do change as follows: the first is the large jumps seen in version 

1.2.  This is explained by changes in functionality, where new features were added into 

stable version 1.2, but without a production of a new major version.  By excluding this 
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jump in version 1.2 (since the jumps do not reflect corrective maintenance) we can accept 

the hypothesis that the stable versions represent corrective maintenance fairly often. 

The other change noticeable in stable versions is that both the average LOC and 

slice size per file, and LOC and slice size per day metrics tend to grow initially (increase 

or decrease) and only then become constant.  For example, for the average LOC and slice 

size per file there is a little growth in version 1.2, more in version 2.0.  For versions 2.2 

and 2.4, the picture is reversed: there is a little decrease initially then become more 

constant especially more using slices size per files than LOC per files.  

This initial growth may indicate that corrective maintenance tends to add code 

and complexity to the existing structure, without an appropriate asset in reorganizing and 

refactoring.  However, the slice coverage metric generally indicate a decrease for the 

stable versions over time however still have a higher values than for development 

versions.  The meaning of this is that the growth of the slice size is faster than the LOC in 

stable versions. 

4.3.4 Perfective Maintenance  

We analyze perfective maintenance as reflected in consecutive versions of 

development kernels.  Based on the structure of the Linux kernel the main motivation for 

new development version is to develop and add new features. 

The results above show that the different metrics for consecutive versions in 

development kernels usually change more than stable versions.  For example, using the 

average LOC and slice size per day metrics, the values for development versions are 

higher and exhibit an increasing trend.  As a consequence, the slice coverage is lower for 
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the development kernels, indicating that development versions are less complex and more 

maintainable than stable versions.  Of course, if we compare at the system size (LOC and 

number of files), and slice size, the picture will seem the reversed, since there are more 

LOC and more files in the development versions. 

 Concerning the improved trend in these metrics over time in development 

versions, two explanations are possible: first, there is a code improvement in the 

development versions.  Second, there is many small files are being added at a higher rate.  

That’s why on average the growth in the desirable direction.  While more detailed 

research is needed to quantify those two options, we have seen specific examples (e.g., 

LOC and slice size per day) of improvements to code complexity and structure especially 

in development versions. Thus as a result we indeed have preliminary evidence for code 

improvement in development versions. 

4.3.5 Adaptive Maintenance  

We analyze adaptive maintenance as reflected in specific directories in the 

development kernels, since they best reflect the adaptation to changes in the environment, 

e.g., addition of new devices that need to be supported. 

For example, Israeli et al [Israeli, Feitelson 2010] analyze the adaptive 

maintenance activities in the Linux kernel using the traditional and well known metrics 

such as lines of code (LOC), McCabe’s cyclomatic complexity (MCC), Halstead’s 

volume, difficulty, and effort metrics (HV, HD, and HE), and Oman’s maintainability 

index (MI) as reflected in the arch and drivers directories.  An interesting note is that 

both directories (arch and drivers) are external to the core of the kernel, and these 
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directories grow not only due to improvements, but also with the need to support 

additional processers and devices [Israeli, Feitelson 2010].  In addition, once a major 

change or update is takes place in the arch and drivers directories, the include directory is 

usually updated with new header files.  Therefore we will concentrate study those three 

directories next. 

We believe by analyze the large discrete jumps occurring in various metric values 

we can specify the adaptive maintenance activity, especially if the large jumps reflected 

in the arch, drivers, and include directories.  To do this, we should measure all the 

changes made that reflect the adaptive changes.  However, a semantic change in one 

function might create a ripple effect among other functions, and consequently affects 

other directories.  For example, an adaptive change in one directory might affect the 

directories in interest (arch, drivers, and include).   

To this end we introduce a source code change metrics based directly only on 

slices of source code.  It entails computing the slice for all the variables in a system and 

modeling how slice changes over time.  Our assumption here, that slicing can be used 

focusing on selected aspects of semantics, and provide a detailed analysis of impact of 

the change code. 

In the next chapter (CHAPTER 5) we will show how to measure forward slicing, 

and then show how the slice-based metrics are computed using this approach.  In short 

we start by measuring the number of lines that changed at variable level, and 

accumulating these values over the: function level, file level, module level, and the entire 

version. 
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By using the information stored in each variable’s slice, we retrieve the size of the 

slice for each variable measured in number of lines of code. The total slice size for each 

function is the sum of individual slice sizes for each variable in the function.  The total 

slice size for a given file is the sum of slice sizes for each function in the file.  Finally, the 

slice size for a given module (directory) is the sum of slice sizes for each file in the 

module.   

For example, if we want to measure the average slice-based changes in the drivers 

directory between releases 1.1.0 and 1.1.13, we start by specifying the files (inside the 

drivers) that changed between the two releases, then calculate the relative change (slice 

size divided by file size) for each file, and finally we take the average over these changes. 

As indicated previously, adaptive maintenance may be inferred from the large 

changes to arch, drivers, and include directories.  That is, these directories should be 

larger in LOC.  Such consideration indicates that version 1.1 is special, as seems there is 

a significant improvement in the code in that version: the slice coverage as a complexity 

metric decreased considerably, and the average LOC and slice size per file grew.  

Therefore, we choose to analyze the adaptive changes as reflected in the arch, drivers, 

and include directories, especially in version 1.1 and we also consider the stable version 

1.2 since this version exhibits a large jump in several metric values, and based on the 

Linux structure it should not reflects an adaptive changes. 

To accomplish this, we compare the accumulative growth-trend of the slice-based 

changes of the 11 major directories in the Linux kernel with the growth trend of LOC and 

slice size as shown in Figure 4.14.  As we can see, all the directories have the same trends 
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as the LOC and slice size, especially kernel and drivers directories.  However, an 

interesting observation is that the pattern of growth in the arch, drivers, and include 

directories can be different from the rest of the kernel, especially is selected points.   
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Figure 4.14. The Accumulative growth of LOC and Slice Size compared to the slice-

based changes in 11 main directories in Linux kernel, between two versions 1.1 and 

1.2. 
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For example, Figure 4.15 shows that the relative changes in arch, drivers, and 

include directories have a higher magnitude than other directories in both versions 1.1 

and 1.2.  However, the changes in the development version are stinking, and somehow 

constant in the stable version. 

So we can conclude that the core kernel and the arch, drivers, and include 

directories do not have the same amount of changes (in both, the same version and in 

different versions).  For example, the average changes in version 1.1 are more noticeable 

in these directories, whereas in the stable version 1.2 is almost constant.  This seems to 

indicate that adaptive maintenance, as reflected in these directories, leads to high values 

of changes. 

 

 

Figure 4.15. Accumulative slice-based changes in the main 11 Linux kernel 

directories, between version 1.1 and version 1.2. 
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4.4 Analysis of Lehman’s Laws of Software Evolution 

In this section we analyze Lehman’s laws of software evolution (using the Linux 

kernel as a case study) based on the calculated slice-based metrics.  The objective is to 

examine whether these laws are supported with our slice-based metrics.  The laws are 

mentioned next based at the date of their introduction.  This is similar with Lehman’s 

empirical work to support these laws [Lehman 1996; Lehman, Ramil, Wernick, Perry, 

Turski 1997]. 

4.4.1 Continuing Change (law 1) 

According to this law, the system that is used must be continually adapted else it 

becomes less useful.  Typically, it is hard to distinguish between the general growth 

(sixth law) and adaptation to environment, and between adaptation changes and general 

changes.  For example, when support for USB is added, this could be considered as a new 

feature or an adaptation to a changing environment, or probably it is a feature that was 

added in response to a change in the environment. 

As we explained before, the adaptive changes in the Linux kernel are easily 

identifiable by examining the arch and drivers directories (which contain all he code that 

pertains to processor architectures and peripherals, respectively), and consequently the 

include directory which is usually updated with new header files once an update or a 

major change in arch and drivers directories is made.  Thus, the code that is added to 

these directories should reflect adaptation to the changing environment.   
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Figure 4.16. Accumulative slice-based changes in the Linux kernel directories, 

version 1.1 and version 1.2, without include directory. 
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Figure 4.17. Slice size growth at the development version 1.1 with 36 releases. 

 

Based in above results, we can assert that Linux (at least in the first two versions) 

exhibits an adaptation to its environment.  However, the original law is probably of wider 

scope than this particular example, i.e., continuing changes in general.  Therefore, the 

need is to consider the general changes not only the adaptation ones. 

A closer investigation of slice growth in version 1.1 as shown in Figure 4.17, we 

can distinguish around the growth trend of the slice size a ripple shown by the arcs and 

the red arrows.  The higher increase with the slice size is followed by a lowers than 

average. 

Lehman [Lehman, Ramil, Wernick, Perry, Turski 1997], discussed briefly the 

possible causes of such cycles as users requests for enhancements which leads to exceeds 

in the growth in the next version, however this incremental growth may increase the 

possible number of defects to be fixed, so as a result its brings the growth back down at 
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the followed versions.  The existence of ripple cycles provides evidence that the growth 

rate is sometimes decline with time.  The explanation of these cycles by Lehman was 

based on terms of feedback loops (the eighth law).   

This phenomenon can be proved if we consider a stable version, such as version 

1.2 with 14 releases.  Based at the Linux structure, the stable versions are more likely to 

include the corrective maintenance activity.  As shown in Figure 4.18, release number (8) 

suffers a performance problem, since the amount of change (slice-based) at release 

number (9) (red arrow) is extremely increased, which indicate that release number (8) is 

unplanned release.  Therefore, the pre planning is very important to conserve the 

consistency with the production of versions. 

 

 

Figure 4.18. Slice size growth at the stable version 1.2 with 14 releases. 
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4.4.2 Increasing Complexity (law 2) 

This law states that as a program evolves its complexity increases unless there is a 

work done to reduce the complexity.  This law is very hard to prove, since both trends are 

possible; either the complexity is increases, or decreases by a work done to reduce it.   

A number of researchers [Lehman 1980; Lehman, Ramil, Perry 1998; Israeli, 

Feitelson 2010] support this law by studying data that growth rates decline over time.  

However, an alternative approach is to measure directly the source code complexity 

given that the availability of the full source code for each version.  In particular, we 

measured the system slices, which is equivalent to the number of paths in the system’s 

representation model (e.g., program dependence graph) and provide a detailed analysis of 

impact of the changed code. 

The results of slicing the full source code of all Linux versions are shown in 

Figure 4.5.  As we discussed before, when the size of the code grows, so does the slice 

size.  Therefore, it’s more interesting to look at normalized values, such as the slice size 

relative to LOC.  The results in this case indicate a declining trend.  Thus the total slice 

size is in general growing more slowly than LOC, and thus the average complexity is 

decreasing. 

Focusing on the overall basis, the complexity of the system is increasing (as 

system size, number of files, and slice size are increasing) and decreasing in slice 

coverage metric.  For example, when we look at the slice size values relative to LOC in 

version 1.1 within different releases, as shown in Figure 4.19, we can see that the 

distribution is improving in the development version over the time.  So maybe we can say 
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that there was work done to reduce the complexity of the kernel in selected points.  

However, it is possible that a large part of this apparent improvement is due to increasing 

in the number of source code (LOC).  Indeed, tabulating the slice coverage in all the 

versions leads to values that are typically lower for the stable versions than the 

development versions.  The accumulative slice coverage of all versions (stable and 

development) is shown in Figure 4.20.   

 

 

Figure 4.19. Slice size relative to LOC (Slice Coverage) for versions 1.1 and 1.2 only. 
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Figure 4.20. Cumulative slice size relative to LOC, (logarithmical scale). 

 

Disregard day’s interval between releases, we can observe that the pattern for the 

stable versions represented by the blue doted lines is increased initially indicating that the 

fraction of LOC with a high slice size is increasing.  This can mean that more high 

complexity LOC is added.  Then the pattern exhibits a dramatic decrease in the top 

releases, indicating that the fraction of LOC with a high slice size is decreasing, which 

means that the percentage of increase in the slice size and LOC tends to be equal.  

For the development versions (red doted lines and version 2.6), the results is more 

concave over time then the stable versions, indicating that the fraction of LOC with a 

high slice size is increasing.  This means that over time we indeed have a higher 

complexity. 
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In conclusion, we see evidence for an investment of work over time to reduce 

code complexity, both in stable versions and development versions and in specific the 

stable versions in later releases.  This result is expected since in the development versions 

the developers tends to add more LOC without paying attention to the code complexity, 

later on in the subsequent stable version there is a significant reduction in code 

complexity.  Therefore we can state that the number of impacted statement lines of code 

is stable which means the cohesion between the system parts is improved and thus that 

the quality of system is increased. 

4.4.3 Self Regulation (law 3) 

In accordance to this law, the system evolution process is self regulating, leading 

to a steady trend.  Lehman in [Lehman, Ramil, Perry 1998] indicated ripples in the graph 

of the system size measured in number of modules as a function of release sequence 

number in order to explain this phenomenon.  He claimed that this ripple indicates the 

existence of feedback system which balances the system so as drive it to its goal. 

We used the slice size here to study this phenomenon.  Again as shown in Figure 

4.17 we can see that the ripples is repeated pattern of deviations from the average growth 

rate, such as alternating between periods of faster growth and fixing of the trend by 

periods of slower growth.  These ripples in the growth of slice size as well as the number 

of files (Figure 6.1) might suggest self regulation. 
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4.4.4 Conservation of Organizational Stability (law 4) 

According to this law, the average work rate on an evolving system is statistically 

invariant.  In order to examine this law we should study the maintenance effort spent on 

the system.  However, as we will explain in the next chapter the data about person-hours, 

and number of maintenance tasks is hard to be getting in open-source systems [Yu, 

Schach, Chen 2005].  Therefore, we will try to study this law looking at slice-based 

source code changes in the files level and also looking at the amount of versions released 

per time. 

 

 

 

Figure 4.21. Files change evolution in the first four versions (v1.1, v1.2, v1.3, and 

v2.0) of Linux kernel. This graph illustrates change property captured by slicing. 
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We start by consider the number of elements handled, as suggested by Lehman.  

We will focus on the average rate of change code for files.  That is, the likelihood that a 

file will change from one release to the next.  To assess the likelihood of a file changing, 

we gather the ratio of files that are unchanged, ratio of files that are changed, and ratio 

of files that are added or removed, by comparing successive releases in a given version.  

Figure 4.21 shows the number of files that were added, deleted, and modified (divided 

into those that grew) between consecutive releases.   

As may be expected, the fraction of files that are handled seems to be relatively 

stable, except perhaps for some decline in the first years.  On average across all versions 

we observed that 96% of the files are unchanged, 3% are modified, and 1% is 

added/removed files.  Thus if we interpret rate to mean the fraction of source code that is 

modified in each release then the data support the claim that the work rate is almost 

constant.  

The invariant work rate can also be observed with regard to the release rate itself, 

such how often releases happen.  We start analyzing the number of releases per month for 

the development versions as shown in Figure 4.22.  In the x-axis each stub represents a 

year, and each bar represents a month.  The vertical lines with the version label (i.e., 2, 4, 

6, 8, and 10) represent the start of that new major version.  It is obvious that since the mid 

of 1997 the rates seem stable (around 3 – 6 release per month) and with a minimum is 

equal to 1 and the maximum is 8.   

From Figure 4.23, we can see that the stable versions are released less frequently 

than the development versions (compared with Figure 4.22).  That is, usually there was 
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one release per month, and the maximum is 10.  Starting with version 2.6 as shown in 

Figure 4.24, the versions are timed to be released once every ~ 3 months.  It is important 

to remember that the Linux release are organized into major (e.g., 1.1, 1.2, etc.) and 

minor (e.g., 1.1.13, 2.2.3, etc.) version. Therefore, one should consider the intervals 

between major releases independently from those leading to minor releases. 

 

 

Figure 4.22. Number of releases per month for development versions, in x-axis (2) = 

v1.1, (4) = v1.3, (6) = v2.1, (8) = v2.3, and (10) = v2.5. 

 

Again we see that development versions are consistently related at a high rate, 

stable versions are related much less frequently, and with version 2.6 all this changed 

such as in the first 11 releases the distribution was similar to that of previous stable 

versions. 
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Figure 4.23. Number of releases per month for stable versions, in the x-axis (3) = 

v1.2, (5) = v2.0, (7) = v2.2, and (9) = v2.4. 

 

 

Figure 4.24. Number of releases per month for version 2.6. 
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4.4.5 Conservation of Familiarity (law 5) 

The Conservation of Familiarity law is clearly supported through the successive 

versions at the development versions of the system.  According to this law, the content of 

consecutive releases is statistically invariant.  That is, the change between consecutive 

releases is limited so as the developers could maintain their familiarity with the code 

from one side and using the system from the other side [Israeli, Feitelson 2010].  In order 

to study the conservation of familiarity with the code, we should consider the pattern of 

releasing development versions.  As shown in Figure 4.13 we can see that the 

development releases come in rapid succession, typically only days apart.  Moreover, 

Figure 4.22 provides clear evidence as the rate of these releases per month is high. As 

shown in Figure 4.1, Figure 4.2, and Figure 4.4, the development versions form a nonstop 

line plotting, and the stable versions are stem out directly from the last available 

development version.  

All of these finding indicate that when the developers are familiar with one 

version, then may expect a little change in the subsequent ones.  Our results above 

indicate that in consecutive releases of the same major stable version, the changes are 

very small, thus we can say that within stable versions Linux indeed conserves user 

familiarity. 

4.4.6 Continuing Growth (law 6) 

According to this law, the functional capability of the system must be continually 

improved in order to maintain the user needs over its lifetime.  Clearly, there are 
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significant functionality additions in differences between consecutive releases of 

development versions to the Linux kernel all the time. 

Additionally, the super-linear rate of growth of system size and slice size metrics 

in the development versions, and the little increase in the beginning of the stable versions 

can support this law directly.   

4.4.7 Declining Quality (law 7) 

According to this law, the quality of system is declining unless continually 

maintained and adapted to a changing environment.  

This law is somehow related to the Increasing Complexity (second law) and could 

be supported using the slice size relative to LOC as shown in Figure 4.11.  This is a 

comparison of the length of the slice to the system size.  The results indicate a declining 

trend, thus the slice size is in general growing more slowly than the system size (LOC).  

While it is hard to obtain a precise quantified metrics to measure the quality, we 

believe as others, that the system slice could be used safely to indicate the quality of the 

system.   

4.4.8 Feedback System (law 8) 

We already discussed the feedback issue as an element of the self regulation law 

above.  Lehman discussed briefly possible causes as user requests for enhancements leads 

to incremental growth in the next release, as a result increase number of possible defects 

to fix which brings growth down back.  
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Lehman in [Lehman, Ramil, Perry 1998] try to support this law by studying the 

stability of growth models in the FEAST project, specifically he consider the assumption 

that initial releases are enough to extract growth model to predict future sizes accurately. 

However, in our study of the Linux kernel, we have the evidence of this law since the 

continued development of the Linux as an open-source system is guided by feedback 

from the user community.  For example, bug reports and fixes, contribution of 

developers.  

4.5 Chapter Summary  

In this chapter, we calculated metrics for the different versions of Linux by slicing 

all versions (11 major versions with a total of 974 releases).  Then we analyzed the 

calculated metrics in order to provide a model of the maintenance process in the Linux 

using the new slice-based metrics. 

We compared the potential slice-based metrics with the traditional code-based 

metrics over the two types of versions in the Linux kernel, which are development and 

stable versions.  Focusing on the slice-based metrics, we found that Linux (in general) is 

growing in a super-linear rate, a linear rate in the stable versions, and exponential in the 

development versions.  When looking at the slice size per file we find that it is decreasing 

for the development versions 2.1, 2.5 and the stable versions 2.2, 2.4.  This is due to the 

higher rate of growth in number of files than slice lines, especially after version 2.0 

(except for version 2.3).  In addition, the growth is increasing for the development 

versions 1.1, 1.3, 2.3 and the stable versions 1.2, 2.0.  This is due to the growth in slice 

lines that has a higher rate than that of files. 
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We also found that the growth of the system size (measured by both LOC, 

number of files) in the stable versions is much more smooth than in the development 

versions.  For the average slice size per day metric, we found that over time the 

development versions have a higher rate of changes than the stable versions.  However, 

the stable versions grow a little initially then become more stable.  In addition, the 

general trend for the slice coverage metric is a decreasing one, where the values for stable 

versions are usually higher than of successive development versions, meaning they are 

more complex, and the values for development versions are more volatile, especially in 

early versions.  The reasons for this can be real improvements and perfective changes in 

the development versions, or it is just an addition of more LOC/files in those versions.  

The comparison between the arch, drivers, and include directories and with the other 

core kernel directories shows that the three directories exhibit the largest change in the 

slice size over two types of versions (development, version 1.1 and stable, version 1.2). 

In light of the above metrics we attempt to characterize the different types of 

maintenance activities in the Linux kernel.  We found that the stable versions do not 

always have only corrective maintenance activities, but also reflect some large jumps and 

a little growth in the beginning.  For the perfective maintenance activity, we found that 

the development versions reflect this, as there is a noticeable improvement of the 

complexity and maintainability over time in these versions.  The adaptive maintenance 

activity is shown to be reflected by the arch, drivers, and include directories.  It seems 

that the metric values over these directories are higher than other kernel’s directories. 
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We have also attempted to identify whether some of Lehman’s laws of software 

evolution are reflected in the evolution of the open-source Linux kernel using the slice-

based metrics.  We found there is evidence for Continuing Change, Continuing Growth, 

Invariant Work Rate, Declining Quality, Conservation of Familiarity, and Increasing 

Complexity.  For other laws, we were not able to conclude any relationship; however we 

did not find contradicting evidence. 
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CHAPTER 5 

A SLICE-BASED ESTIMATION APPROACH FOR MAINTENANCE EFFORT 

This chapter addresses a direct application of our lightweight slicing technique: 

computing all the slices for an entire lifetime of version history.  We seek to understand 

how those slices are used to build an estimation approach for maintenance effort.  A case 

study of the GNU Linux kernel with over 900 versions spanning 17 years of history is 

presented.  For each version the forward static slice of all variables is computed using our 

lightweight slicing approach.  The slice size is computed as the total number of line, 

functions, or files in the slices.  Changes to the system are then modeled using the 

difference between the slice sizes of two versions.  The hypothesis is that this model is 

predictive of maintenance effort.  The three different granularities of slice sizes (i.e., line, 

function, and file) are analyzed.  The results demonstrate that the approach accurately 

predicts effort in a scalable manner. 

5.1 Problem Statement 

Systems must be maintained so as to remain useful [Lehman 1980] and estimating 

the amount of effort for particular maintenance tasks is a key aspect for any system 

(closed or open).  Additionally, as systems grow, maintenance typically becomes more 

complicated and costly.  Thus, the maintenance process should be well planned in 

advance through an accurate effort estimation of the maintenance tasks [De Lucia, 

Pompella, Stefanucci 2005; Yu 2006].   
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Traditionally, maintenance effort is calculated using historical process and coarse-

grained system information such as person hours, number of tasks, and system size 

[Asundi 2005]. The predictor variables used to estimate this value typically compose a 

measures of the system size and complexity, productivity factors, as well as size and 

number of maintenance tasks [Binkley, Schach 1997].  However, the number of 

maintenance tasks is not known at the start time of the system, and must be estimated.   

Conventionally, an estimation process for maintenance effort contains three steps, 

as follows: 

1. Extract maintenance data, such as maintenance effort (person-hours), number 

of maintenance tasks, system size. 

2. Build and validate the maintenance-effort model.  Conventionally, this is a 

mathematical model that represents the maintenance effort as a function of 

other software measures.  The model should be validated against additional 

maintenance data. 

3. Predict future maintenance effort using the maintenance-effort model. 

While using maintenance-task information is very attractive for managers of a 

typical closed-source system, who have to estimate the effort required maintaining the 

system as a number of developers, this approach is not that useful for larger corrective, 

adaptive, or perfective tasks during the system evolution of open-source system [De 

Lucia, Pompella, Stefanucci 2005].  In this case, the effort of a maintenance period 

greatly depends on the amount of source-code changes made to generate a new software 

version from an earlier operational version.  For open-source systems, this data is not 
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recorded or documented [Yu, Schach, Chen 2005].  Additionally, because of the nature 

and complexity of the maintenance tasks in open-source systems, there are many 

negatives to directly using effort-estimation models built on closed-source data. Hence, 

we cannot follow the same process to estimate maintenance effort.   

However, the availability of the source code and history allow for other measures 

that are related to the maintenance effort.  To this end we introduce a maintenance effort 

estimation based directly only on source code.  It entails computing the slice for all the 

variables in a system and modeling how the slice changes over time.   

Specifically, we identify and validate slice-based software measures and a 

corresponding process that can represent maintenance effort in open-source systems.  We 

analyze 974 versions of Linux kernel, and construct, validate, and compare three indirect 

maintenance-effort models.  The estimation approaches of maintenance effort are built 

and evaluated using residual-analysis statistics.  Statistical measures include R
2
, adjusted-

R
2
, PRED25, PRED50, MMRE, MdMRE, and SPR [Kendall, Stuart, Ord 1987; Jorgensen 

1995].  The prediction results are encouraging and the production of the estimate is very 

scalable. 

To the best of our knowledge, this is the first work applying a slice-based metric 

to build an estimation approach for maintenance effort in open-source systems.  We 

consider the hypothesis that the historical source code changes can be used to regulate 

effort estimation approaches with a high sensible degree of predictive power.  

Furthermore, our work is the first to uncover the maintenance changes using slicing over 

a large amount of data of the Linux kernel by slicing versions from over 17 years.  
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5.2 Slice-Based Metrics 

Many existing software metrics are computed only using syntactic information of 

the code and use that to model semantic information.  For example, cyclomatic 

complexity is computed by counting the number of branch (i.e., conditionals) to infer 

semantic complexity. Semantic information is much more difficult to derive and model.  

For example, a semantic change in one function might create a ripple effect among other 

functions.  In a maintenance context, the effort estimation is a function of the code that is 

to be (was) changed.  To help identify such problem program slicers often applied and are 

valuable tool in determining side effects.   

We note that the maintenance effort for open-source systems is not given as the 

number of person-hours expended as the case in closed-source system [Asundi 2005; Yu 

2006].  However, it has been argued [Niessink, Vliet 1997; Niessink, Vliet 1998; Ramil, 

Lehman 2000; Yu 2006] that source-code changes in open-source systems could be used 

as an indirect measure for estimating maintenance effort.  That is, the amount of source-

code changes from version k (base version) at time t to version k+1 (evolved version) at 

time t+1 indirectly represents the effort spent maintaining the system from version k to 

version k+1.  The amount of these changes can be viewed at three different granularities, 

line, function, and file, such as the number of lines, functions, and files that were added, 

deleted, and modified during the maintenance activity. 

A number of researchers have observed that the source-code change can be found 

using textual, syntactic, or semantic differencing [Maletic, Collard 2004].  For example, 

previous studies [Ramil, Lehman 2000; De Lucia, Pompella 2002; De Lucia, Pompella, 
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Stefanucci 2005; Yu 2006], determine the source-code change between two consecutive 

versions either from:  

1. CVS logs,  

2. Using some computer aided software (CASE) tools,  

3. Or system utilities such as UNIX diff.   

Chen et al [Chen, Schach, Yu, Offutt, Heller 2004] discussed the limitations of 

using the change logs to detect source-code changes in three open-source case studies.  

He shows that up to 78% of changes made to the source code are omitted from the 

system’s change logs, and concludes that before using change logs as a research base for 

development and maintenance of open-source systems, experimenters should check 

carefully for errors and inaccuracies.  Additionally, this tracking data is not always 

available.  For example, the change logs for Linux kernel only started to be released after 

the major version 2.4 (version 2.4.1, January 29, 2001).  That’s why Yu [Yu 2006] in his 

study of the Linux kernel built two models to estimate the maintenance effort using the 

change logs for major versions 2.4 and 2.5 only, with a total of 121 versions. 

Since here we are interested with the problem of finding the changes between two 

versions of the system that exhibits all changed behaviors of an evolved version with 

respect to the base version, textual differencing tools (diff) are not satisfactory because 

they cannot detect behavioral changes.   

By using semantic-differencing approaches that depend on static-program 

analysis we can extract facts and other information from versions of the system.  For 

example, static program slicing can be applied to the available source code of the version, 
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focusing on selected aspects of semantics.  This process removes from consideration 

parts of the program that are determined to have no effect upon the semantics of interest.  

It is possible to determine the parts with different behaviors by comparing the slices of 

the base and the evolved versions with respect to corresponding points.  The assumption 

here is that if the slice of the evolved version at statement S differs from the slice of the 

base version at the same statement S, then by the mean of the slicing definition, statement 

S potentially exhibits behavior changes between the versions.   

By using source-code slicing to measure source-code changes, we provide a 

detailed analysis of the impact of the changed code, as opposed to other methods which 

are based only on tracking information provided by developers.   

We will first show how to measure forward slicing, and then show how the slice-

based metrics are computed using this approach 

5.3 Measuring Forward Slicing  

We consider that the extent of source-code change in one version could indirectly 

represent the effort spent in this version.  The source-code change measured based on the 

changes to the slicing profiles.  We consider a change of interest to be any change which 

could have an effect on the size of the slice profile.  An example of a change that is not of 

interest is changing some operator to a different operator.  Examples of changes of 

interest include adding code, deleting code, or changing the variable used in a given 

context.  Each of these changes would result in a change to at least one slice profile.   

Unlike most other approaches, we perform slicing over all variables inside the 

system.  That is, we compute a slice profile for each variable in the system.  This is in 
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contrast to slicing just a specific variable where when a statement is modified the 

statements in the slice may not be change.   

 

(base version) 

 

f/func/x/@ 1, slines {1, 2} 

 

f/main/i/@ 1, slines {4, 5, 7, 9}, cfunctions {func} 

 

f/main/sum /@2, slines {4, 5, 6, 8} 

 

f/main/y/@ 3, slines {4, 9, 10} 

 

 

(evolved version) 

 

f/func/x/@ 1, slines {1, 2} 

 

f/main/i/@ 1 slines {4, 5, 6, 7} 

 

f/main/sum/@ 2, slines {4, 5, 6, 8, 9}, cfunctions {func} 

 

f/main/y/@ 3, slines {4, 9, 10}, dvariables {sum} 

Figure 5.1. Two system dictionaries, for two versions base and evolved. 

 

Figure 5.1 shows a small sample of the system dictionary of two different 

versions (base and evolved) over the same file.  As we can see, the slice profiles of 

variables i, sum, and y changed between the two versions.  These changes can be seen in 

the evolved version by the function call func using the variable sum instead of variable i 

in the base version.  In addition, the variable sum becomes a dependent variable for the 

variable y.  That is, any change with the value of the variable y now affects the value of 

the variable sum. 
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By using the information stored in each slice profile, we can easily retrieve the 

size of the slice for each variable (denoted by Sz) in the system by accumulating the 

number of lines in the slines, cfunctions, dvariables, and pointers fields.  In addition, the 

total slice size for each function (denoted by MSz), is the sum of individual slice sizes for 

each variable v in the function.  If there are n variables inside a given function m, then the 

total slices size for function m is denoted by: 





n

i
ivSzmMSz

1
)()(  

And if there are n methods inside a given file f, then the total slice size for file f is 

denoted by: 





n

i
imMSzfFSz

1
)()(  

Finally, if there are n files in the system, then the slice size for the entire system is 

denoted by: 





n

i
ifFSzTSz

1
)(  

For example, from Figure 5.1 we can see that the Sz value for the variable i in the 

base version is 6 which includes 4 statement lines form the slines field of the variable i, 

plus 2 statement lines from the slines field of the function call func().  However, this 

value for the same variable in the evolved version is equal to 4 since as shown from the 

slicing dictionary the function call func() is deleted.  

The number of statements that are added, deleted, or modified in the slice is 

extracted by considering the following source-code changes made over the base version: 
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 Adding a new line either inside an already existing function or a new line in a 

new function,  

 Deleting a line from an already existing function or deleting the entire 

function,  

 Modifying an already existing line. 

Renamed variables are treated as added variables in the evolved version and as 

deleted variables from the base version.  Both cases are considered and recorded in the 

system dictionary and may decrease or increase the slice size of the variable, and 

consequently the slice size of the enclosing function, file, and entire system.  Therefore, 

the amount and the exact position of change could be determined using the size changes 

over the Sz, MSz, FSz, and TSz values from the base version to the evolved version.   

In order to detect the modified variables, these variables must exist in both 

versions with the same path name.  For instance, from Figure 5.2 which shows a snapshot 

of the system dictionary for two Linux versions in XML, we can see that the variables 

tot_len and retval have the same path in both versions (with filename 

linux/fs/read_write.c, and function name do_readv_writev).  That is, the change over the 

Sz values for both variables is easily identified, where the Sz value for variable tot_len 

changed from 4 to 5, and for variable retval changed from 11 to 14.  The variable flag in 

the evolved version is not detected as a modified variable between versions, because it 

does not exist in the base version.  However, this variable is detected as an added variable 

with a new slice profile in the evolved version.  
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<Project> 

<version name = "linux-2.2.23" TSz = "258059"> 

 

     <file name = "linux/fs/read_write.c" FSz = "286"> 

 

           <function name = "do_readv_writev" MSz = "79"> 

 

                  <variable name = "tot_len" Sz = “4”/> 

 

                  <variable name = "retval" Sz = “11”/> ………….. 

 

           </function> ………….. 

 

     </file> ………….. 

 

</version> 

 

<version name=” linux-2.2.24” TSz = "258865"> 

 

     <file name="linux/fs/read_write.c" FSz = "309"> 

 

           <function name="do_readv_writev" MSz = "87"> 

 

                  <variable name="tot_len" Sz = “5”/> 

 

                  <variable name="retval" Sz = “14”/> 

 

                  <variable name="flag" Sz = “7”/> ………….. 

 

           </function> ………….. 

 

     </file> ………….. 

 

</version> 

</Project> 

Figure 5.2. The system dictionary for the linux-2.2.23 (base version), and the linux-

2.2.24 (evolved version), in its XML representation, values of Sz, MSz, FSz, and TSz 

are different between two versions. 

 

In contrast, if a variable that exist at the base version is deleted from the evolved 

version, then this variable detected as a deleted variable.  Finally, the same scenario 

similarly applies to added, deleted, and modified functions and files.   
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The extracted information of the slicing process is then categorized by the means 

presented in the next subsection. 

5.4 Extract Slice-Based Metrics 

We use the information on the forward slices generated as shown in previous 

section to calculate slice-based metrics.  Here we consider three different granularities of 

the slice sizes (line, function, and file); consequently different levels of the slice-based 

metrics can be computed.   

Unlike most other metrics, slice-based metrics are based on program slice 

information, which is of finer granularity than the measures in many other metrics.  

Program slices have the additional advantage of capturing program behavior, and hence 

the slice-based metrics are more directly related to the program behavior.   

In order to build the slice-based maintenance-effort model, for each of the 974 

versions of the Linux kernel, we extract ten measures from the source-code repository 

and the changes between slice profiles.  These measures are described in Table 5.1.  In 

these measures, ΔsliceSize, Δfunction, and Δfile are the extent of change between the two 

versions, and hence could be used to indirectly represent maintenance effort.  We explain 

each of the slice-based metric items as follows. 
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Table 5.1. Code and Slice Based Extracted Measures. 

Measure Description 

sliceSize Total slice size measured in LOC 

ΔsliceSize 
Indirect maintenance effort at the system level, measured as the difference of slice 

sizes 

Δfunction 
Indirect maintenance effort at the function level, measured as the number of 

functions which contain modified slices 

Δfile 
Indirect maintenance effort on the file level, measured as the number of files which 

contain modified slices 

LOC Total size of the system measured in LOC 

files Total size of the system measured in number of files 

LOC-g Difference between LOCs for two consecutive versions 

files-g Difference between files for two consecutive versions 

lag-time Time duration between two versions in days 

Scoverage The slice coverage, the slice size relative to LOC 

 

The first metric that we introduce is sliceSize, the slice size measured in LOC.  

For an individual slice this is just the Sz value measured at the above section.  For a 

function and file, we summed the sliceSize of all slices of the variables inside the function 

(MSz) and file (FSz), respectively.  For a system, we sum the sliceSize for all slices in the 

system (TSz). 
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For two versions of the system, we can then measure the difference between the 

sliceSizes.  This forms a new metric ΔsliceSize.  This gives us some idea of the growth of 

the system in terms of complexity, i.e., the ΔsliceSize metric represents the increase or 

decrease in the number of impacted statements.   

Additionally, the number of modified slices between two versions is used to 

introduce two more metrics, Δfunction and Δfile.  The metric Δfunction is the number of 

functions which contain modified slices, and the metric Δfile is the number of files which 

contain modified slices.  These two metrics indicate how much the changed statements in 

a slice profile depend on each other by intra-procedural or inter-procedural control or 

data dependencies.  A high Δfunction value indicates more logically complex code, and a 

high Δfile value may indicate that the changes in the system were very broad.   

Each version of the system has its own release date.  The lag-time (measured in 

days) measures the time between the start and the completion of a maintenance task.  The 

lag-time includes the duration from the date when a base version is released, until the 

date the evolved version is released.  The assumption here that the maintenance requests 

start when the base version is released, and the tasks are completed when the evolved 

version is released.  That is, the lag-time is the sum of the individual times for each 

maintenance task in a version of Linux.  Obviously, lag-time is related to maintenance 

effort.  That is, an increase in lag-time is expected to indicate an increase in maintenance 

effort, and vice versa.   

By comparing the slice size (sliceSize) to the system size (LOC), we can measure 

the slice coverage using the Scoverage metric [Weiser 1979].  This metric represents the 
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active portion of the system and is included as a factor of maintenance activity.  It is 

related to different types of maintenance because each type has a different effect on the 

maintenance effort [De Lucia, Pompella 2002; Hayes, Patel, Zhao 2004; De Lucia, 

Pompella, Stefanucci 2005].  For example, corrective maintenance requires more effort 

than the other types of maintenance.   

Finally, since the size of the system is shown in the literature to be related to 

maintenance effort, we also extract the LOC and number of files.  For two versions of the 

system, we can then measure the difference.  This represents the system growth and 

forms the metrics LOC-g and files-g. 

5.5 Slice-Based Metrics on the Linux kernel 

As a way of showing the application of our indirect maintenance-effort metrics on 

a real system, we have applied the metrics to the Linux kernel.  These metrics are then 

compared to traditional measures of code effort, e.g., LOC. 

We analyzed 11 major versions containing 974 separate releases released over 17 

years.  Table 5.2 shows a summary of these major versions along with statistics related to 

the individual releases and their slices.  The major versions are identified and ordered by 

their sequence number and release date.  The column Releases is the total number of 

releases for each major version.  The column Files shows the sum of the number of 

source files of each release in the major version.  And the column LOC shows the sum of 

the individual LOCs for each release in the major version.  The last column shows the 

total sliceSize for each release in the major version.  As shown, this total slice size is ~2 
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billion LOC, with a slice size relative to LOC of 46.0%.  The full sources of the kernel 

(.gz) files were downloaded from the official Linux kernel archives
5
. 

 

Table 5.2. A summary of Linux kernel versions data, 11 major versions with a total 

of 974 releases, where (S) = stable, (D) = development, version 2.6 includes both (S) 

and (D). 

Major 

Version 
Releases Files LOC sliceSize 

1.0 (S) 1 487 166,144 83,891 

1.1 (D) 36 23,676 8,815,860 4,243,784 

1.2 (S) 14 10,717 3,995,650 1,895,802 

1.3 (D) 100 113,173 45,289,545 21,301,236 

2.0 (S) 41 67,718 30,010,473 13,903,791 

2.1 (D) 133 337,790 140,356,670 64,719,507 

2.2 (S) 27 116,777 42,507,265 19,511,355 

2.3 (D) 52 240,527 114,681,685 52,500,499 

2.4 (S) 76 649,111 249,771,469 114,093,834 

2.5 (D) 76 774,524 306,209,149 139,758,991 

2.6(S, D) 418 8,146,805 3,469,166,975 1,580,414,630 

Total 974 10,481,305 4,410,804,740 2,012,343,429 

 

 

                                                 

5
 The Linux Kernel archives: http://www.kernel.org. 
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We use the data extracted from the 11 major versions shown in Table 5.2 to 

indirectly build estimation models for maintenance effort.  The models were built on data 

from 783 versions, and then validated on the maintenance data of 191 versions from 

major version 2.6 

 

Table 5.3. Descriptive statistics of the collected measures. 

Measure Min Max Mean Median 
Standard 

deviation 

sliceSize 83,696 3,781,285 1,372,048 1,167,153 1,095,625 

ΔsliceSize 5.0 899,045 47,708 4,130 134,547 

Δfunction 0.0 1,903 123.8 73.3 224.9 

Δfile 0.0 597 32 14.7 67.9 

LOC 165,768 8,300,297 3,002,400 2,551,821 2,409,270 

files  487 19,604 7,554 5,068.4 6,101.6 

LOC-g 8.0 1,977,000 105,119 9,148.1 295,832.6 

files-g 0.0 2,434 34.3 28.9 105.4 

lag-time 3,312 1,125 6.6 5.0 174.4 

Scoverage 0.38 0.50 0.46 0.46 0.01 

 

Table 5.3 summarizes the descriptive statistics of the collected measures.  As we 

can see for some measures, such as ΔsliceSize, Δfunction, Δfile, LOC-g, files-g, and lag-

time, the standard deviation is greater than the corresponding mean, indicating that the 

data are widely spread.   
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For example, for ΔsliceSize the minimum value is 5 and the maximum value is 

899,045 representing an extremely wide range.  It is worth noting that the wide range of 

data does not indicate a fault in the measurements.  In other words, these measurements 

do not necessarily need to be a certain value or within a certain range. 

It is common for historical datasets to contain a considerable number of missing 

values, and several techniques have been developed to deal with this [De Lucia, 

Pompella, Stefanucci 2005].  The main advantage of our dataset is that it does not contain 

missing values.  This is because our data is the source code, and no external metadata or 

other records are used. 

5.6 Slice-Based Maintenance Effort Models 

As discussed in Section 5.1, building an accurate maintenance-effort estimation 

model should be derived from accurate maintenance-effort data, which is rarely recorded 

for open-source, and many closed-source, systems [De Lucia, Pompella, Stefanucci 2005; 

Yu 2006].  Therefore, we cannot apply an effort-estimation model built from a closed-

source system directly to an open-source system because the absence of maintenance-

effort data prevents validation.  Alternatively, we take the following approach: 

Phase 1: Identify measures that are theoretically related to and can indirectly 

represent maintenance effort.  The candidate measures should be available for most 

systems, both closed and open source.  If such measures can be found and validated, we 

can construct an indirect model for maintenance effort and use it to predict the indirect 

maintenance effort of open-source systems. 
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Phase 2: Extract the maintenance data.  The data include indirect maintenance-

effort identified and validated in previous phase (aka dependent variables) and the data of 

other related measures that can be used to predict the indirect maintenance effort (aka 

independent variables).  For example, if we identify source-code changes from version k 

to version k+1 as the indirect maintenance effort, then LOC change between both 

versions is a measure of source-code change.  In this paper, we use slice-based changes to 

measure the indirect maintenance effort, so sliceSize change is a measure of source-code 

change. 

Phase 3: Validate the correlation between the dependent variables and 

independent variables.  We used Spearman’s rank-correlation coefficient since there are 

no assumptions regarding the underlying distribution of the data, and its use is 

recommended for hypothesis testing when the number of data points exceeds 30 

[Binkley, Schach 1997].  Strong correlation means that the independent variables can be 

used to indirectly represent maintenance effort; weak correlation indicates the measure is 

not eligible to represent maintenance effort. 

Phase 4: Multiple linear regression analysis is used to build the effort-prediction 

approach.  Specifically, the indirect maintenance-effort is represented as a function of 

other related measures.  We validate this approach against collected maintenance data 

from the Linux kernel.  In addition, we show how we can improve this approach by 

considering three different granularities of slice sizes.  

Phase 5: Predict the indirect maintenance effort based on the models built in the 

previous phase. 
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The indirect maintenance effort can be represented at three levels, namely line 

level, function level, and file level.  Therefore, the dependent variables are ΔslizeSize, 

Δfunction, and Δfile, and the independent variables are LOC, files, sliceSize, files-g, LOC-

g, lag-time, and Scoverage.  Table 5.4 shows Spearman’s rank correlations between the 

dependent variables and independent variables based on the maintenance data of 783 

versions of Linux.  The correlation coefficient that is statistically significant at the 0.01 

level (2-tailed) is shown in bold.  The strong linear relations are not necessarily 

significant, since the significance is specified by the p-value. 

From Table 5.4, we can distinguish multiple significant linear correlations 

between the three dependent variables and some of the independent variables.  The 

ΔsliceSize and Δfile are significantly correlated with files-g and LOC-g.  There is also 

statistically significant linear correlation between Δfunction and the four measures (LOC, 

files, LOC-g, and sliceSize).   

Based on this observation, we built three indirect maintenance-effort estimation 

models to represent the line-, function-, and file-level changes.  These models consider 

only those independent variables that have significant correlations with the dependent 

variable at the 0.01 level.   

The three models are: 

(1) ΔsliceSize = c1 + c2 (LOC-g) + c3 (files-g)   

(2) Δfile = c1 + c2 (LOC-g) + c3 (files-g)   

(3) Δfunction = c1 + c2 (LOC-g) + c3 (sliceSize) + c4 (files) + c5 (LOC)     
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Table 5.4. The correlations between dependent variables and independent variables 

based on the training dataset (783) versions, significant at 0.01 level is shown in 

bold. 
In

d
ep

en
d

en
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V
a

ri
a
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Dependent Variables 

 Δfunction Δfile ΔsliceSize 

LOC -0.358 -0.119 -0.073 

files -0.362 -0.121 -0.072 

files-g 0.026 0.491 0.750 

LOC-g 0.234 0.805 0.702 

sliceSize -0.367 -0.129 -0.081 

lag-time 0.122 0.169 0.214 

Scoverage 0.142 0.127 0.219 

 

 

The c1 variable represents the constant factor or the intercept, which characterizes 

the height of the regression line when it crosses the y-axis where the dependent variable 

is plotted, or we can say that the c1 represent the predicted value of the dependent 

variable when all the independent variables are equal to zero.  The ci (where i = 2 to 5) 

represents the slope of the line regression which indicates the sensitivity of the dependent 

values to the changes in the independent values.  That is ci represent the increase or 

decrease in y for each unit change in x.  For example, in model (3) the coefficient for the 

LOC is equal c5, so for every unit decrease in the LOC a c5 unit increase in Δfunction is 

predicted, when holding all other variables constant. 

The three effort-estimation models are linear, and linear regression is used to 

estimate the coefficient.  Table 5.5 shows the linear regression analysis of the models.  



www.manaraa.com

146 

 

The p-value demonstrates the ability of the independent variable to have a significant 

predictive capability in the presence of other variables.  If the independent variable has a 

non-significant p-value, then we can remove this variable and refit the model again, since 

this variable does not have predictive capability in the presence of other independent 

variables.  If adding a new independent variable can improve the accuracy of the model, 

then this variable is said to have the predictive capability. 

 

Table 5.5. Linear regression analysis of the three indirect effort estimation models, 

not significant at 0.01 levels is shown in bold. 

Model 
Independent 

variable 
ci p-value R

2
 adjusted-R

2
 

(1) 
LOC-g 0.029 0.004 

0.424 0.415 
files-g 104.429 0.000 

(2) 
LOC-g 0.006 0.000 

0.963 0.962 
files-g 0.238 0.054 

(3) 

sliceSize 0.007 0.001 

0.469 0.452 
files -0.564 0.067 

LOC -0.002 0.013 

LOC-g 0.006 0.000 

 

 

As can be seen from Table 5.5, the independent variable files-g in model (2) does 

not have the significant predictive capability at the 0.01 level (p-value = 0.054).  And the 

same case occurs with the independent variables files and LOC in model (3).  Therefore, 

we need to refit these two models by either removing the files-g variable from model (2) 
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and removing files and LOC variables from model (3), and/or adding new independent 

variables. 

Table 5.6 shows the results after fitting the two models.  In model (2) we remove 

the files-g variable and adding the independent variable lag-time.  In model (3) we 

removed the files variable and we added two other variables lag-time and Scoverage.  In 

this case, as can be seen from the table, all the independent variables in model (2) and 

model (3) have significant predictive power.   

 

Table 5.6. Refit linear regression analysis of Models (2) and (3). 

Model 
Independent 

variable 
ci p-value R

2
 Adjusted-R

2
 

(2) 

LOC-g 0.006 0.000 

0.968 0.968 

lag-time 0.726 0.000 

(3) 

LOC-g 0.005 0.000 

0.609 0.593 

sliceSize -0.014 0.004 

LOC 0.007 0.004 

lag-time 2.836 0.000 

Scoverage 91.653 0.000 

 

 

The models after refitting models (2) and (3) are:        

(2) Δfile = c1 + c2 (LOC-g) + c3 (lag-time)   

(3) Δfunction = c1 + c2 (LOC-g) + c3 (sliceSize) + c4 (lag-time) + c5 (LOC) + c6 

(Scoverage). 
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The R
2
 coefficient of determination value is important to determine whether or not 

the regression model was helpful.  If the regression line provides an estimate of the 

predictable values that closely match the observed values, then the R
2
 value will be close 

to one (the better the data fits the model), and with zero indicating no relation between 

independent and dependent variables.   

The adjusted-R
2
 that adjusts for the number of independent variables in a model is 

also calculated.  The value of adjusted-R
2
 only increases if a new independent variable 

improves the model more than would be expected by chance.   

From Table 5.5 and Table 5.6, we can see that model (2) has both larger R
2
 and 

adjusted-R
2
 values than model (1) and model (3), which means, based on the data of 783 

versions, model (2) is more accurate than other two models in predicting the indirect 

maintenance effort.  Unfortunately, a high value of R
2
 does not guarantee the goodness of 

the model and does not indicate whether the appropriate independent variables have been 

used in the model or not [De Lucia, Pompella 2002; De Lucia, Pompella, Stefanucci 

2005].  In addition, the high values of R
2
 and adjusted-R

2
 do not assess the quality of 

future prediction, but only the capability of fitting the sample data.  That is, if an effort 

estimation model is developed using a particular dataset and the accuracy of this model is 

evaluated using the same dataset, then the value obtained will be optimistic.  The error 

will be low and will not represent the performances of the model on future datasets. 

5.7 Evaluating Model Performance  

To study the quality of the three models for future predictions, we apply the 

models to predict the indirect maintenance effort of 191 versions from major version 2.6.  
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These versions range from version 2.6.25.3 released May, 10 2008 to version 2.6.37.1 

released Feb, 17 2011.  The predicted results and the actual observed measurements are 

compared to study the accuracy of predictions. 

Model validation is the most important step in the model building process.  The 

validation of a model often consists of the analysis of residuals [Ramil, Lehman 2000; De 

Lucia, Pompella, Stefanucci 2005; Yu 2006].  The residual represents the difference 

between the predicted value estimated by the model and the observed value of the 

dependent variable.   

Our residual analysis includes: 

 SPR statistics: is the sum of absolute value of the residuals (e.g., prediction errors).  

That is, the SPR = ∑ k | Observed k – Predicted k |. 

 MRE statistics: the magnitude relative error, which include the MMRE (mean 

magnitude relative error), and MdMRE (median magnitude relative error).  The 

MRE is defined as: MRE k = ( |Observed k – Predicted k| ) / Observed k.  The 

MdMRE is calculated, since the MMRE is known to be very sensitive to the 

extreme values, such as a few very high relative error MRE values could influence 

the overall result.  

Other indicators commonly used to evaluate the prediction model based on MRE 

are the percentage of prediction at specific level PRED, which measures the percentage 

of predicted values within X% of the observed values.  The value of X is suggested in 

[Conte, Dunsmore, Shen 1986] to be at least 25% and a good prediction model should 
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predict 75% of the observed values.  The two variants of the measure PRED we 

calculated are: 

 PRED25: the number of predicted values for which MRE was less than or equal to 
25%. 

 PRED50: the number of predicted values for which MRE was less than or equal to 
50%. 

The predicted results and the measurements are compared to study the accuracy of 

the predictions.  Figure 5.3, Figure 5.4, and Figure 5.5 illustrate the comparisons of the 

predictions and measurements for ΔsliceSize, Δfile, and Δfunction, respectively.  In these 

figures we plotted the ΔsliceSize, Δfile, and Δfunction values (observed and predicted) on 

the y-axis with the version date on the x-axis. 

 

Table 5.7. Model Predictive Performances over 191 releases in the test dataset, as 

seen Model (2) outperforms other models. 

Measure Model  (1) Model  (2) Model (3) 

PRED25 % 33.3 43.9 33.4 

PRED50 % 47.4 64.9 50.9 

SPR 39451.6 448.5 2960.1 

MdMRE % 53.4 30.2 45.8 

MMRE % 74.1 44.2 63.9 

 

 

On a per-model basis, it is clear that the predicted results are fairly often 

comparable with the actual observed measurements.  However, it is not visually 

noticeable that one model outperforms another.  For this reason, the class-of-models 
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measurement (discussed above) was performed to assess the quality of future predictions 

and evaluate their performances quantitatively.  The results of the application of these 

measures over the 191 versions test dataset are shown in Table 5.7. 

The coefficient of files-g has the largest value in Table 5.5and Table 5.6, thus 

indicating that the number of Linux files has a greater influence on system complexity 

and the maintenance effort. 

 

 

Figure 5.3. ΔsliceSize Observed and Predicted values in 191 versions using model 

(1), PRED25 = 33.3, PRED50 = 47.4. 
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Figure 5.4. Δfile Observed and Predicted values in 191 versions using model (2), 

PRED25 = 43.9, PRED50 = 64.9. 

 

As expected from the analysis of R
2
 values for model (1) in Table 5.5 and the 

refitted models (2) and (3) in Table 5.6, Table 5.7 shows that models (2) and (3), which 

include the lag-time, generated higher R
2
 values than did model (1).  Moreover, model (2) 

performs better than model (3).  In particular, model (2) predicts ~44% of the cases 

within a relative error less than 25% and ~65% of the cases within relative error less than 

50%.   
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Figure 5.5. Δfuncions Observed and Predicted values in 191 versions using model 

(3), PRED25 = 33.4, PRED50 = 50.9. 

 

The MMRE, MdMRE, SPR, PRED25, and PRED50 values indicate that model (2) is 

more accurate than models (1) and (3) in predicting the indirect maintenance effort in the 

Linux kernel.  This also implies that the number of files containing modified slices (Δfile) 

is more accurate in representing the complexity of the system than the number of 

functions containing modified slices (Δfunction) and the number of lines in the slices 

(ΔsliceSize).  From model (2) we could say that the maintenance effort not only depends 
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on the growth size of LOC itself, but also depends on the lag-time spent developing LOC, 

as model (2) integrates both the LOC-g and the lag-time. 

5.8 Threat to Validity and Limitations 

There are several threats to the construct validity of this study.  The first threat to 

the statistical validity comes from the outliers in the data.  An outlier is an observation 

that its value lies out of the overall pattern of a distribution.  Outlier points can therefore 

indicate faulty data where a particular model might not be valid.  When performing linear 

regression fitting to data, it is often preferable to discard outliers before computing the 

model of best fit.  That is, there are two ways to determine the outliers:  

1. Study the scatter plots of the dependent variables against the independent 

variables, and 

2. Study the distribution of a variable.   

However, our measures are not limited to a certain value; we cannot simply come 

to a decision this is an outlier just because the measurement is far from the mean value.  

Similarly, without supporting evidence and by just looking at the scatter plots of 

dependent variables against independent variables for our dataset, we cannot determine 

the outliers either.  Therefore, we had no proof of outliers in our datasets.   

Removing some data points in order to improve the prediction accuracy of the 

models is not meaningful.  Hence, we did not remove any data points.  However, if more 

information about the Linux versions and the supporting data was available, and we could 

remove some confirmed inaccurate data, the performance of the models will be 

drastically improved.   



www.manaraa.com

155 

 

The major threat in building the indirect maintenance-effort models comes from 

the difference between the closed-source and open-source systems.  Since, our prediction 

models depend on source-code measurement to predict the volume of changes as an 

indication of the maintenance effort.  However, this is not the case for closed-source 

systems which used person-hours as a metric for maintenance effort. 

5.9 Related Work 

Many approaches to the effort-estimation problem have been derived using 

different assumptions, data sources, and methods to process the data to estimate the effort 

in the context of maintaining strictly managed and closed-source systems [Ramil, 

Lehman 2000; Yu 2006].  These models can be categorized into three main categories 

namely Analogy, Delphi, and Parametric [Shepperd, Schofield, Kitchenham 1996].  The 

first two categories derive the estimation models based on the past experience of similar 

systems, or using expert opinions.  In contrast, Parametric effort estimation models 

involve the construction of statistical models from empirical data, e.g., using regression 

analysis on available data.  Moreover, the Parametric models mathematically relate the 

effort and duration (e.g., days) to the variables that influence them. 

Boehm et al [Boehm 2002] was the first to presents an algorithmic software cost 

estimation model named the constructive cost model COCOMO.  In [Boehm, Clark, 

Horowitz, Westland, Madachy, Selby 1995] the same author extended the COCOMO 

model to estimate the maintenance effort by using a size-change factor to estimate the 

development effort.  This factor represents the estimation of the size of changes 

expressed as the fraction from the total size of the system measured in LOC, this factor is 
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change over a year period.  De Lucia et al [De Lucia, Pompella, Stefanucci 2005] called 

this factor the “annual change of traffic” since this metric estimates the total software 

LOC changes during the year.  Another work based on the size of changes is presented by 

Hayes et al [Hayes, Patel, Zhao 2004] who built a model for adaptive-maintenance effort 

using the changed LOC and the number of operators changed.  

An estimation model based on historical data and previous project experience is 

proposed and discussed in [Shepperd, Schofield, Kitchenham 1996].  In this estimation 

model, the condition statements of the in progress software project is evaluated using a 

historical maintenance dataset from previous closed-source projects.  

Belady and Lehman [Belady, Lehman 1972] suggest a model to approximate the 

cost and effort of releasing a new version from an old one.  The suggested model 

estimates the efforts that are related to both the functionality updating and anti-regressive 

activities. 

The maintenance-effort estimation that involves the convention of linear 

regression analysis was introduced by De Lucia et al [De Lucia, Pompella 2002].  In this 

research, the authors claimed that the types of the different maintenance tasks should be 

considered to improve the outcomes of the estimation model being used.  

Jorgensen [Jorgensen 1995] derived different estimation models for maintenance 

effort using log linear regression, neural networks, and pattern recognition.  He compares 

the prediction accuracy of these models using an industrial dataset.  All the models 

estimate the size of the system measured in the summation of added, deleted, and 

modified LOC during the maintenance phase.  Another linear model based on the size 
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and the number of maintenance tasks is proposed in [De Lucia, Pompella, Stefanucci 

2005], furthermore, other work done by Niessink et al [Niessink, Vliet 1997; Niessink, 

Vliet 1998] use linear regression analysis to extract estimation based on function points.  

Coarse granularity measures have an impact on predicting required changes 

during the maintenance activities of the software project.  For example, Lindvall 

[Lindvall 1998] demonstrates that the number of classes outperform the finer grained 

metrics in change prediction.  In contrast, non-linear cost estimation models were 

proposed by several researches.  For example, in [Eick, Graves, Karr, Marron, Mockus 

2001] a code decay and a related number of measurements were illustrated to construct a 

non-linear changes prediction model.       

Because of the nature and complexity of the maintenance tasks in open-source 

systems, there are many negative aspects to using existing effort estimation models 

directly for open-source projects.  Little work of maintenance-effort estimation has been 

conducted for open-source systems.  The major guidelines and tips to build an estimation 

model in these crucial systems are reported in [Asundi 2005].  

Yu [Yu 2006] derived two indirect maintenance-effort models for the Linux 

kernel system using multiple linear regression.  Nevertheless, these estimation models are 

based on and used factors which are derived from the closed-source software projects.  In 

addition the validation process determined using the recorded maintenance information 

from closed-source systems, i.e., both estimation models depend on the number of 

maintenance tasks for the next revision of the system.  Therefore, the models are not 

applicable if the maintenance tasks for the next revision are not included. 
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5.10 Chapter Summary 

In this chapter, we presented a large-scale empirical study aimed at building an 

indirect maintenance-effort estimation models for open-source systems.  The dataset used 

was obtained from the Linux kernel and used as a case study to build and validate the 

models performance using multivariate linear regression models.  Our proposed 

maintenance-effort estimation models are able to accurately determine the source-code 

changes based only on the source code.  Our proposed models estimate the maintenance 

effort based at the amount of changes made maintaining the system.   

It is worth noting that we did not construct a direct maintenance-effort model 

(person-hours) for open-source systems.  However, we decided to use the available 

source code, because:  

1. There is limited direct maintenance-effort data available for open-source 

systems and we therefore cannot validate the correctness of such a model, and 

2. Maintenance effort represented as person-hours is less meaningful for open-

source systems.  We are more interested in the amount of change on source 

code and the lag-time to perform the maintenance task.   

In order to perform the forward slicing for multiple versions of large systems 

(e.g., Linux) we used a lightweight forward static slicing approach.  That is the main 

reason that the analysis over all the Linux versions was even possible.  A partial parsing 

of the source code is done (source statements are in interest) and the time and space 

required is small and scalable.   
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Our future research will study other open-source systems to determine more 

measures that can be used to indirectly represent maintenance effort and construct new 

more accurate prediction models. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

This dissertation addresses several practical concerns regarding the maintenance 

and evolution of open-source large-scale software systems.  A lightweight program 

slicing technique is introduced and demonstrated.  The technique is also shown to be 

highly scalable to large-scale systems (e.g., Linux kernel).  Given this highly scalable 

method, new slice-based metrics that reflect the maintenance activities and supports some 

of laws of software evolution are derived and evaluated.  Lastly, the technique is used to 

estimate the maintenance effort in open-source systems. 

A lightweight forward static slicing approach and a tool (srcSlice) were developed 

that generates slicing for all variables in a given system.  The approach does not require 

complete and compiling-able programs, since the approach uses the srcML format and 

toolkit.  It also does not compute the program dependence graph for the entire program 

but instead dependence information is computed as needed (on-the-fly) while computing 

a slice on a given variable.  The results demonstrate that the tool produces accurate slices 

as compared to an existing industrial tool (CodeSurfer) and is very efficient and highly 

scalable.   

An empirical study is presented to understand and investigate how slices are 

changed during the evolution of the Linux kernel.  The srcSlice tool was used to generate 

slices for every individual variable in the Linux kernel over its seventeen years of history, 
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with more than a total lines of code ~4.4 billion LOC.  It was observed that the slice size 

increases proportionally with the system size and the average slice size relative to LOC is 

46.0%. 

The data obtained by slicing the Linux kernel was used to identify and validate 

new slice-based software metrics for maintenance effort.  These metrics were used to 

build and validate a maintenance-effort estimation models and a corresponding process 

that represents maintenance effort in open-source systems.  The results show that these 

models are able to accurately determine source code changes based only on the source 

code.  These models designed to indirectly estimate the maintenance effort spent 

maintaining the system, especially open-source systems. 

The slice-based metrics are evaluated by applying them to characterize the 

different types of maintenance activities (corrective, perfective, and adaptive) and they 

are shown to support some of the Lehman’s laws of software evolution in open-source 

systems.  It was observed that some of these laws are reflected by the slice-based metrics.  

To the best of our knowledge, this is the first work applying slice-based metrics in 

order to build an estimation model for maintenance effort in open-source systems.  

Furthermore, our work is the first to uncover the different maintenance activities using 

slicing over a large amount of data.  The results demonstrate that the approach and the 

estimation models accurately predict the maintenance effort in open-source system in a 

highly scalable manner, and with a high rank of predictive power. 
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The work presented in this dissertation provides a solid foundation for the further 

explanation of problems related to the maintenance of large-scale systems.  Future work 

supported by the research presented in this dissertation includes: 

 Investigate how system slices change over the entire history of a large 

software system, and how slices reflect different types of changes occurring in 

a system possibly identifying refactoring changes. 

 Investigating different slice-based metrics in the context of coupling and 

cohesion. 

 Studying other large-scale open-source systems to determine more measures 

that can be used to represent the maintenance activities, and consequently the 

maintenance effort and construct new more accurate prediction models. 

 Using the system slices change of the source code to leverage the details about 

the system’s changes.  Then each change in the slice will be analyzed to see if 

it meets a set of criteria that categorizes changes as design altering or not.  The 

objective is to automatically determine if a given source code change (in the 

context of slice change) impacts the design of the system.  This allows code-

to-design traceability to be consistently maintained as the system evolves.  
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APPENDIX A 

XML TTRANSLATION INOFRMATION 

Table 6.1. srcML Translation Information for the 16 Open-Source Programs using 

src2srcml toolkit. 

Program Version Number of Files 

Translated Skipped Error Total 

ed 1.2 10 219 0 229 

ed 1.6 10 201 0 211 

wdiff 0.5 13 27 0 40 

which 2.20 14 29 0 43 

barcode 0.98 18 64 0 82 

enscript 1.4.0 52 134 0 186 

enscript 1.6.5 107 386 0 493 

enscript 1.6.5.1 107 387 0 494 

enscript 1.6.5.2 107 387 0 494 

a2ps 4.10.4 188 584 0 772 

findutils 4.4.2 314 832 0 1146 

cvs 1.12.10 340 440 0 780 

acct 6.5 27 48 0 75 

dico 2.2 332 652 0 984 

make 3.82 58 303 0 361 

radius 1.0 196 382 0 578 

Total 
 

1893 5075 0 6968 
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APPENDIX B 

SLICE INTERSECTION COMPARISON 

Table 6.2. Intersected slice over 9 files from enscript-1.6.1, where (%) in the 

CodeSurfer (CS) and srcSlice (sS) columns is the slice size relative to LOC, (%) in 

the intersection column is the intersected slice relative to both tools slice size, (SM) is 

the relative safety margin for a slice. 

enscript-1.6.1 Size Slice Size Intersection 

File Name SLOC 
CodeSurfer (CS) srcSlice (sS) 

Lines 
sS 

% 

CS 

% 
Lines % SM Lines % SM 

\src\psgen.c 1868 1235 66.1 1.73 794 42.5 1.11 713 89.8 57.7 

\src\util.c 1406 1028 73.1 1.49 720 51.2 1.05 688 95.6 66.9 

\src\main.c 1291 960 74.4 1.61 638 49.4 1.07 596 93.4 62.1 

\compat\alloca.c 224 39 17.4 7.80 55 24.6 11.00 5 9.1 12.8 

\afmlib\strhash.c 267 124 46.4 1.46 144 53.9 1.69 85 59.0 68.5 

\afmlib\afmparse.c 759 501 66.0 1.62 313 41.2 1.01 310 99.0 61.9 

\states\lex.c 1475 695 47.1 7.81 162 11.0 1.82 89 54.9 12.8 

\states\gram.c 1084 397 36.6 2.32 271 25.0 1.58 171 63.1 43.1 

\afmlib\afm.c 584 440 75.3 1.24 355 60.8 1.00 355 100 80.7 

Total 8958 5419 
  

3452 
  

3012 
  

Average 995.3 602.1 55.8 3 383.6 39.9 2.4 334.7 73.8 51.8 

Min 224 39 17.4 1.24 55 11 1 5 9.1 12.8 

Max 1868 1235 75.3 7.81 794 60.8 11 713 100 80.7 
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APPENDIX C 

LINUX KERNEL VERSIONS 

Figure 6.1 shows the growth in the number of files in the Linux kernel, and Figure 

6.2 shows the growth in the LOC values in the Linux kernel.  Both figures ran over 10 

major versions with a total of 974 releases spent over 17 years of the history. 

Table 6.3 shows the Linux kernel versions, from version 1.0.0 to version 2.6.37.1.  

All the kernel (“dot”-bz2) files were downloaded from www.kernel.org website, and 

sliced using the srcSlice tool.  In total, Table 6.3 examines a total of 974 stable and 

development versions.  In each version the study examines a variety of parameters such 

as: number of code lines (LOC), lag-time (the duration from the date when a base version 

is released, until the date the evolved version is released, measured in days), slice size 

measured in LOC, etc. 

The version publish date (Date column) was examined by reviewing the most 

updated modified file in the source code root directory.   

 

http://www.kernel.org/
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Figure 6.1. The growth of the number of files in Linux-kernel over 10 versions with 

a total of 974 releases.  
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Figure 6.2. LOC growth in Linux, with a total 974 versions. 
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Table 6.3. Linux kernel versions, Percentage is the slice size relative to program size 

measured in LOC, versions are sorted and ordered by their release date. 

Version Date LOC Slice Size Percentage 
Lag-

Time 

1.0.0 3/13/1994 166,144 83,891 50.5% 
 

1.1.0 4/6/1994 165,768 83,696 50.5% 24 

1.1.13 5/23/1994 177,630 89,046 50.1% 47 

1.1.23 6/27/1994 186,785 93,261 49.9% 35 

1.1.29 7/14/1994 190,831 94,494 49.5% 17 

1.1.33 7/21/1994 198,877 98,034 49.3% 7 

1.1.35 7/24/1994 204,162 100,703 49.3% 3 

1.1.45 8/15/1994 216,889 104,759 48.3% 22 

1.1.52 10/6/1994 220,179 106,573 48.4% 52 

1.1.59 10/28/1994 223,165 108,229 48.5% 22 

1.1.63 11/14/1994 230,310 111,582 48.4% 17 

1.1.64 11/15/1994 231,266 112,155 48.5% 1 

1.1.67 11/28/1994 234,373 113,157 48.3% 13 

1.1.70 12/2/1994 237,793 115,075 48.4% 4 

1.1.71 12/5/1994 238,844 115,417 48.3% 3 

1.1.73 12/15/1994 240,370 115,894 48.2% 10 

1.1.74 12/23/1994 244,042 117,721 48.2% 8 

1.1.75 12/29/1994 244,716 118,076 48.3% 6 

1.1.76 1/2/1995 250,188 120,986 48.4% 4 

1.1.78 1/9/1995 252,895 121,686 48.1% 7 

1.1.79 1/11/1995 253,326 122,058 48.2% 2 

1.1.80 1/12/1995 255,196 122,753 48.1% 1 

1.1.81 1/13/1995 257,051 123,620 48.1% 1 

1.1.82 1/16/1995 263,826 125,801 47.7% 3 

1.1.83 1/18/1995 266,825 126,785 47.5% 2 

1.1.84 1/22/1995 268,217 127,627 47.6% 4 

1.1.85 1/23/1995 269,823 128,017 47.4% 1 

1.1.86 1/27/1995 273,136 130,021 47.6% 4 

1.1.87 1/30/1995 273,503 130,185 47.6% 3 

1.1.88 1/31/1995 276,934 131,533 47.5% 1 

1.1.89 2/5/1995 278,956 132,533 47.5% 5 

1.1.90 2/8/1995 279,088 132,626 47.5% 3 

1.1.91 2/12/1995 281,075 133,315 47.4% 4 

1.1.92 2/15/1995 281,711 133,877 47.5% 3 

1.1.93 2/20/1995 282,078 133,906 47.5% 5 
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1.1.94 2/22/1995 282,540 134,125 47.5% 2 

1.1.95 3/2/1995 283,492 134,458 47.4% 8 

1.2.0 3/7/1995 283,522 134,446 47.4% 5 

1.2.1 3/17/1995 283,757 134,686 47.5% 10 

1.2.2 3/27/1995 284,061 134,802 47.5% 10 

1.2.3 4/2/1995 284,125 134,832 47.5% 6 

1.2.4 4/6/1995 284,256 134,885 47.5% 4 

1.2.5 4/12/1995 284,477 134,930 47.4% 6 

1.2.6 4/23/1995 284,788 135,113 47.4% 11 

1.2.7 4/29/1995 284,919 135,181 47.4% 6 

1.2.8 5/3/1995 286,632 136,034 47.5% 4 

1.2.9 6/1/1995 286,873 136,122 47.5% 29 

1.2.10 6/12/1995 287,011 136,000 47.4% 11 

1.3.0 6/12/1995 312,214 150,199 48.1% 0 

1.3.2 6/16/1995 313,630 150,986 48.1% 4 

1.3.3 6/18/1995 313,936 151,263 48.2% 2 

1.2.11 6/26/1995 287,045 136,206 47.5% 8 

1.3.4 6/26/1995 323,249 154,492 47.8% 0 

1.3.5 6/29/1995 330,525 158,224 47.9% 3 

1.3.6 6/30/1995 330,909 158,340 47.9% 1 

1.3.7 7/6/1995 344,697 164,527 47.7% 6 

1.3.8 7/7/1995 344,761 164,544 47.7% 1 

1.3.9 7/11/1995 352,533 167,486 47.5% 4 

1.3.10 7/13/1995 353,360 168,133 47.6% 2 

1.3.11 7/18/1995 353,953 168,472 47.6% 5 

1.2.12 7/25/1995 287,080 136,272 47.5% 7 

1.3.12 7/25/1995 354,444 168,536 47.5% 0 

1.3.13 7/27/1995 354,586 168,658 47.6% 2 

1.3.14 7/31/1995 355,287 169,184 47.6% 4 

1.2.13 8/2/1995 287,104 136,293 47.5% 2 

1.3.15 8/2/1995 355,887 169,317 47.6% 0 

1.3.16 8/8/1995 356,417 169,914 47.7% 6 

1.3.17 8/9/1995 357,133 170,024 47.6% 1 

1.3.18 8/13/1995 357,417 170,142 47.6% 4 

1.3.19 8/15/1995 358,326 170,524 47.6% 2 

1.3.20 8/16/1995 358,865 170,974 47.6% 1 

1.3.21 8/28/1995 360,355 171,801 47.7% 12 

1.3.22 9/1/1995 363,404 173,025 47.6% 4 
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1.3.23 9/3/1995 364,036 173,587 47.7% 2 

1.3.24 9/5/1995 364,154 173,750 47.7% 2 

1.3.25 9/9/1995 364,897 174,250 47.8% 4 

1.3.26 9/13/1995 366,198 174,547 47.7% 4 

1.3.27 9/14/1995 374,100 178,717 47.8% 1 

1.3.28 9/18/1995 374,978 178,782 47.7% 4 

2.3.29 9/23/1995 375,044 178,825 47.7% 5 

1.3.30 9/27/1995 377,913 180,485 47.8% 4 

1.3.31 10/4/1995 381,183 181,956 47.7% 7 

1.3.32 10/6/1995 381,797 182,317 47.8% 2 

1.3.33 10/10/1995 384,929 183,431 47.7% 4 

1.3.34 10/13/1995 389,100 185,546 47.7% 3 

1.3.35 10/16/1995 391,388 186,233 47.6% 3 

1.3.36 10/23/1995 394,078 187,589 47.6% 7 

1.3.37 10/28/1995 395,168 188,068 47.6% 5 

1.3.38 11/7/1995 396,340 187,693 47.4% 10 

1.3.39 11/9/1995 397,245 187,951 47.3% 2 

1.3.40 11/11/1995 397,807 188,694 47.4% 2 

1.3.41 11/13/1995 402,833 188,973 46.9% 2 

1.3.42 11/16/1995 403,687 191,688 47.5% 3 

1.3.43 11/21/1995 409,388 192,333 47.0% 5 

1.3.44 11/25/1995 418,189 194,468 46.5% 4 

1.3.45 11/27/1995 425,205 197,128 46.4% 2 

1.3.46 12/11/1995 426,991 200,330 46.9% 14 

1.3.47 12/13/1995 436,120 201,326 46.2% 2 

1.3.48 12/17/1995 439,514 203,464 46.3% 4 

1.3.49 12/21/1995 442,048 205,036 46.4% 4 

1.3.50 12/24/1995 444,574 206,683 46.5% 3 

1.3.51 12/27/1995 444,789 207,942 46.8% 3 

1.3.52 12/29/1995 449,132 207,987 46.3% 2 

1.3.53 1/2/1996 450,467 210,424 46.7% 4 

1.3.54 1/4/1996 450,932 210,965 46.8% 2 

1.3.55 1/6/1996 451,016 211,135 46.8% 2 

1.3.56 1/8/1996 452,968 211,184 46.6% 2 

1.3.57 1/12/1996 463,795 212,100 45.7% 4 

1.3.58 1/18/1996 567,594 216,963 38.2% 6 

1.3.59 1/23/1996 474,390 219,104 46.2% 5 

1.3.60 2/7/1996 475,490 224,003 47.1% 15 
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1.3.61 2/9/1996 475,754 224,292 47.1% 2 

1.3.62 2/11/1996 476,041 224,446 47.1% 2 

1.3.63 2/14/1996 477,096 224,488 47.1% 3 

1.3.64 2/15/1996 477,664 224,892 47.1% 1 

1.3.65 2/17/1996 477,766 225,055 47.1% 2 

1.3.66 2/17/1996 477,758 225,125 47.1% 0 

1.3.69 2/17/1996 502,991 240,456 47.8% 0 

1.3.67 2/20/1996 479,248 225,115 47.0% 3 

1.3.68 2/22/1996 501,394 225,956 45.1% 2 

1.3.70 3/1/1996 505,855 241,344 47.7% 8 

1.3.71 3/4/1996 520,232 242,860 46.7% 3 

1.3.72 3/8/1996 521,848 248,521 47.6% 4 

1.3.73 3/12/1996 523,217 249,799 47.7% 4 

1.3.74 3/14/1996 525,205 250,422 47.7% 2 

1.3.75 3/16/1996 525,363 251,406 47.9% 2 

1.3.76 3/19/1996 525,639 251,438 47.8% 3 

1.3.77 3/21/1996 529,728 251,620 47.5% 2 

1.3.78 3/25/1996 529,751 253,696 47.9% 4 

1.3.79 3/26/1996 529,807 253,682 47.9% 1 

1.3.80 3/28/1996 531,749 253,643 47.7% 2 

1.3.81 3/30/1996 535,370 254,513 47.5% 2 

1.3.82 4/2/1996 538,475 256,406 47.6% 3 

1.3.83 4/3/1996 538,610 258,022 47.9% 1 

1.3.84 4/4/1996 540,187 258,059 47.8% 1 

1.3.85 4/8/1996 544,966 258,865 47.5% 4 

1.3.86 4/10/1996 545,493 260,928 47.8% 2 

1.3.87 4/12/1996 545,478 261,248 47.9% 2 

1.3.88 4/13/1996 547,341 261,218 47.7% 1 

1.3.89 4/15/1996 547,516 262,226 47.9% 2 

1.3.90 4/16/1996 548,269 262,187 47.8% 1 

1.3.91 4/18/1996 562,143 262,600 46.7% 2 

1.3.92 4/20/1996 574,310 264,260 46.0% 2 

1.3.93 4/21/1996 641,932 269,562 42.0% 1 

1.3.94 4/22/1996 641,888 297,048 46.3% 1 

1.3.95 4/24/1996 648,611 297,062 45.8% 2 

1.3.96 4/27/1996 650,702 300,291 46.1% 3 

1.3.97 4/29/1996 651,848 301,289 46.2% 2 

1.3.98 5/4/1996 655,378 302,276 46.1% 5 
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1.3.99 5/7/1996 655,774 305,094 46.5% 3 

1.3.100 5/10/1996 655,783 305,404 46.6% 3 

2.0.0 6/9/1996 677,958 312,861 46.1% 30 

2.0.1 7/3/1996 679,132 315,020 46.4% 24 

2.0.2 7/5/1996 679,280 315,116 46.4% 2 

2.0.3 7/6/1996 688,391 317,940 46.2% 1 

2.0.4 7/8/1996 687,441 317,908 46.2% 2 

2.0.5 7/10/1996 687,681 318,005 46.2% 2 

2.0.6 7/12/1996 687,962 318,376 46.3% 2 

2.0.7 7/15/1996 688,083 318,397 46.3% 3 

2.0.8 7/25/1996 688,408 318,512 46.3% 10 

2.0.9 7/26/1996 688,724 318,639 46.3% 1 

2.0.10 7/27/1996 688,704 318,628 46.3% 1 

2.0.11 8/5/1996 689,882 318,941 46.2% 9 

2.0.12 8/9/1996 689,891 318,890 46.2% 4 

2.0.13 8/16/1996 693,000 321,607 46.4% 7 

2.0.14 8/20/1996 693,523 322,017 46.4% 4 

2.0.15 8/25/1996 693,651 322,075 46.4% 5 

2.0.16 8/31/1996 693,971 322,184 46.4% 6 

2.0.17 9/2/1996 694,179 322,278 46.4% 2 

2.0.18 9/5/1996 694,240 322,312 46.4% 3 

2.0.19 9/11/1996 694,461 322,431 46.4% 6 

2.0.20 9/13/1996 694,499 322,448 46.4% 2 

2.0.21 9/20/1996 694,965 322,705 46.4% 7 

2.1.0 9/30/1996 698,027 324,136 46.4% 10 

2.1.1 10/3/1996 698,288 324,255 46.4% 3 

2.0.22 10/8/1996 695,662 323,052 46.4% 5 

2.1.2 10/8/1996 699,010 324,583 46.4% 0 

2.1.3 10/10/1996 699,735 324,913 46.4% 2 

2.1.4 10/15/1996 700,804 325,399 46.4% 5 

2.0.23 10/18/1996 695,866 323,136 46.4% 3 

2.1.5 10/18/1996 718,955 333,653 46.4% 0 

2.1.6 10/29/1996 723,214 335,590 46.4% 11 

2.0.24 10/30/1996 702,315 324,685 46.2% 1 

2.1.7 11/1/1996 727,498 337,538 46.4% 2 

2.0.25 11/8/1996 702,402 324,771 46.2% 7 

2.1.8 11/9/1996 731,806 339,497 46.4% 1 

2.1.9 11/12/1996 736,140 341,468 46.4% 3 



www.manaraa.com

174 

 

2.1.10 11/15/1996 740,498 343,450 46.4% 3 

2.1.11 11/18/1996 744,881 345,443 46.4% 3 

2.0.26 11/22/1996 703,495 325,392 46.3% 4 

2.1.12 11/22/1996 749,290 347,448 46.4% 0 

2.1.13 11/23/1996 753,725 349,465 46.4% 1 

2.0.27 12/1/1996 703,885 325,545 46.2% 8 

2.1.14 12/1/1996 758,187 351,494 46.4% 0 

2.1.15 12/12/1996 762,673 353,534 46.4% 11 

2.1.16 12/18/1996 767,185 355,586 46.3% 6 

2.1.17 12/22/1996 771,724 357,650 46.3% 4 

2.1.18 12/29/1996 776,289 359,726 46.3% 7 

2.1.19 12/31/1996 780,881 361,814 46.3% 2 

2.1.20 1/2/1997 785,499 363,914 46.3% 2 

2.0.28 1/14/1997 704,209 325,483 46.2% 12 

2.1.21 1/14/1997 790,143 366,026 46.3% 0 

2.1.22 1/23/1997 794,816 368,151 46.3% 9 

2.1.23 1/26/1997 799,515 370,288 46.3% 3 

2.1.24 1/28/1997 804,241 372,437 46.3% 2 

2.0.29 2/7/1997 704,276 325,503 46.2% 10 

2.1.27 2/26/1997 818,587 378,961 46.3% 19 

2.1.28 3/3/1997 823,423 381,160 46.3% 5 

2.1.29 3/10/1997 828,289 383,373 46.3% 7 

2.1.30 3/26/1997 833,182 385,598 46.3% 16 

2.1.31 4/3/1997 838,103 387,836 46.3% 8 

2.1.32 4/5/1997 843,053 390,087 46.3% 2 

2.0.30 4/8/1997 724,756 335,543 46.3% 3 

2.1.33 4/10/1997 848,034 392,352 46.3% 2 

2.1.34 4/14/1997 853,041 394,629 46.3% 4 

2.1.35 4/15/1997 858,079 396,920 46.3% 1 

2.1.36 4/23/1997 863,145 399,224 46.3% 8 

2.1.37 5/14/1997 868,240 401,541 46.2% 21 

2.1.38 5/18/1997 873,366 403,872 46.2% 4 

2.1.39 5/18/1997 878,521 406,216 46.2% 0 

2.1.40 5/22/1997 883,706 408,574 46.2% 4 

2.1.41 5/28/1997 888,920 410,945 46.2% 6 

2.1.42 5/29/1997 894,167 413,331 46.2% 1 

2.1.43 6/16/1997 899,442 415,730 46.2% 18 

2.1.44 7/7/1997 904,748 418,143 46.2% 21 
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2.1.45 7/17/1997 910,085 420,570 46.2% 10 

2.1.46 7/19/1997 915,453 423,011 46.2% 2 

2.1.47 7/24/1997 920,854 425,467 46.2% 5 

2.1.48 8/4/1997 926,283 427,936 46.2% 11 

2.1.49 8/11/1997 931,745 430,420 46.2% 7 

2.1.50 8/14/1997 937,241 432,919 46.2% 3 

2.1.51 8/19/1997 942,767 435,432 46.2% 5 

2.1.52 9/3/1997 948,324 437,959 46.2% 15 

2.1.53 9/4/1997 953,913 440,501 46.2% 1 

2.1.54 9/6/1997 959,536 443,058 46.2% 2 

2.1.55 9/9/1997 965,192 445,630 46.2% 3 

2.1.56 9/20/1997 970,879 448,216 46.2% 11 

2.1.25 9/23/1997 808,995 374,599 46.3% 3 

2.1.26 9/23/1997 813,778 376,774 46.3% 0 

2.1.57 9/25/1997 976,600 450,818 46.2% 2 

2.1.58 10/15/1997 982,355 453,435 46.2% 20 

2.0.31 10/17/1997 772,428 360,444 46.7% 2 

2.1.59 10/17/1997 988,143 456,067 46.2% 0 

2.1.60 10/25/1997 993,964 458,714 46.1% 8 

2.1.61 10/31/1997 999,820 461,377 46.1% 6 

2.1.62 11/3/1997 1,005,709 464,055 46.1% 3 

2.1.63 11/12/1997 1,011,631 466,748 46.1% 9 

2.1.64 11/15/1997 1,017,590 469,458 46.1% 3 

2.0.32 11/18/1997 773,460 361,024 46.7% 3 

2.1.65 11/18/1997 1,023,582 472,183 46.1% 0 

2.1.66 11/26/1997 1,029,607 474,923 46.1% 8 

2.1.67 11/29/1997 1,035,670 477,680 46.1% 3 

2.1.68 11/30/1997 1,041,768 480,453 46.1% 1 

2.1.69 12/1/1997 1,047,901 483,242 46.1% 1 

2.1.70 12/3/1997 1,054,069 486,047 46.1% 2 

2.1.71 12/4/1997 1,060,272 488,868 46.1% 1 

2.1.72 12/9/1997 1,066,513 491,706 46.1% 5 

2.0.33 12/16/1997 774,036 361,641 46.7% 7 

2.1.73 12/19/1997 1,072,789 494,560 46.1% 3 

2.1.74 12/20/1997 1,079,100 497,430 46.1% 1 

2.1.75 12/22/1997 1,085,451 500,318 46.1% 2 

2.1.76 12/24/1997 1,091,837 503,222 46.1% 2 

2.1.77 1/2/1998 1,098,260 506,143 46.1% 9 
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2.1.78 1/6/1998 1,104,721 509,081 46.1% 4 

2.1.79 1/13/1998 1,111,219 512,036 46.1% 7 

2.1.80 1/21/1998 1,117,754 515,008 46.1% 8 

2.1.81 1/24/1998 1,124,327 517,997 46.1% 3 

2.1.82 1/26/1998 1,130,939 521,004 46.1% 2 

2.1.83 1/30/1998 1,137,589 524,028 46.1% 4 

2.1.84 1/31/1998 1,144,279 527,070 46.1% 1 

2.1.85 2/4/1998 1,151,005 530,129 46.1% 4 

2.1.86 2/11/1998 1,157,772 533,206 46.1% 7 

2.1.87 2/17/1998 1,164,578 536,301 46.1% 6 

2.1.88 2/21/1998 1,171,423 539,414 46.0% 4 

2.1.89 3/7/1998 1,178,308 542,545 46.0% 14 

2.1.90 3/18/1998 1,185,235 545,695 46.0% 11 

2.1.91 3/26/1998 1,192,199 548,862 46.0% 8 

2.1.92 4/2/1998 1,199,205 552,048 46.0% 7 

2.1.93 4/7/1998 1,206,251 555,252 46.0% 5 

2.1.94 4/9/1998 1,213,338 558,475 46.0% 2 

2.1.95 4/10/1998 1,220,467 561,717 46.0% 1 

2.1.96 4/14/1998 1,227,636 564,977 46.0% 4 

2.1.97 4/18/1998 1,234,849 568,257 46.0% 4 

2.1.98 4/24/1998 1,242,101 571,555 46.0% 6 

2.1.99 5/1/1998 1,249,397 574,873 46.0% 7 

2.1.100 5/8/1998 1,256,735 578,210 46.0% 7 

2.1.101 5/9/1998 1,264,115 581,566 46.0% 1 

2.1.102 5/14/1998 1,271,539 584,942 46.0% 5 

2.1.103 5/21/1998 1,279,005 588,337 46.0% 7 

2.0.34 6/4/1998 816,287 374,819 45.9% 14 

2.1.104 6/5/1998 1,286,514 591,752 46.0% 1 

2.1.105 6/7/1998 1,294,068 595,187 46.0% 2 

2.1.106 6/13/1998 1,301,665 598,642 46.0% 6 

2.1.107 6/25/1998 1,309,305 602,116 46.0% 12 

2.1.108 7/2/1998 1,316,990 605,611 46.0% 7 

2.0.35 7/13/1998 844,848 391,762 46.4% 11 

2.1.109 7/17/1998 1,324,722 609,127 46.0% 4 

2.1.110 7/21/1998 1,332,495 612,662 46.0% 4 

2.1.111 7/25/1998 1,340,317 616,219 46.0% 4 

2.1.112 7/28/1998 1,348,181 619,795 46.0% 3 

2.1.113 8/1/1998 1,356,093 623,393 46.0% 4 
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2.1.114 8/3/1998 1,364,051 627,012 46.0% 2 

2.1.115 8/6/1998 1,372,053 630,651 46.0% 3 

2.1.116 8/19/1998 1,380,104 634,312 46.0% 13 

2.1.117 8/20/1998 1,388,200 637,994 46.0% 1 

2.1.118 8/26/1998 1,396,343 641,697 46.0% 6 

2.1.119 8/27/1998 1,404,535 645,422 46.0% 1 

2.1.120 9/5/1998 1,412,772 649,168 45.9% 9 

2.1.121 9/9/1998 1,421,058 652,936 45.9% 4 

2.1.122 9/16/1998 1,429,392 656,726 45.9% 7 

2.1.123 9/28/1998 1,437,775 660,538 45.9% 12 

2.1.124 10/4/1998 1,446,206 664,372 45.9% 6 

2.1.125 10/9/1998 1,454,685 668,228 45.9% 5 

2.1.126 10/24/1998 1,463,215 672,107 45.9% 15 

2.1.127 11/7/1998 1,471,793 676,008 45.9% 14 

2.1.128 11/12/1998 1,480,422 679,932 45.9% 5 

2.0.36 11/16/1998 879,296 406,679 46.3% 4 

2.1.129 11/19/1998 1,489,102 683,879 45.9% 3 

2.1.130 11/26/1998 1,497,832 687,849 45.9% 7 

2.1.131 12/3/1998 1,506,610 691,841 45.9% 7 

2.1.132 12/22/1998 1,515,441 695,857 45.9% 19 

2.2.0 1/26/1999 1,534,289 704,428 45.9% 35 

2.2.1 1/28/1999 1,537,319 705,806 45.9% 2 

2.2.2 2/23/1999 1,540,356 707,187 45.9% 26 

2.2.3 3/9/1999 1,543,399 708,571 45.9% 14 

2.2.4 3/23/1999 1,546,449 709,958 45.9% 14 

2.2.5 3/29/1999 1,549,504 711,347 45.9% 6 

2.2.6 4/16/1999 1,552,565 712,739 45.9% 18 

2.2.7 4/28/1999 1,555,632 714,134 45.9% 12 

2.2.8 5/11/1999 1,558,704 715,531 45.9% 13 

2.3.0 5/11/1999 1,621,440 744,060 45.9% 0 

2.2.9 5/13/1999 1,561,783 716,931 45.9% 2 

2.3.1 5/14/1999 1,640,195 752,589 45.9% 1 

2.3.2 5/15/1999 1,659,163 761,215 45.9% 1 

2.3.3 5/17/1999 1,678,350 769,940 45.9% 2 

2.3.4 6/1/1999 1,697,758 778,766 45.9% 15 

2.3.5 6/2/1999 1,717,386 787,692 45.9% 1 

2.3.6 6/10/1999 1,737,241 796,721 45.9% 8 

2.0.37 6/14/1999 909,460 420,679 46.3% 4 
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2.2.10 6/14/1999 1,564,868 718,334 45.9% 0 

2.3.7 6/21/1999 1,757,322 805,853 45.9% 7 

2.3.8 6/22/1999 1,777,635 815,090 45.9% 1 

2.3.9 6/30/1999 1,798,180 824,433 45.8% 8 

2.3.10 7/8/1999 1,818,960 833,883 45.8% 8 

2.3.11 7/21/1999 1,839,978 843,441 45.8% 13 

2.3.12 7/28/1999 1,861,238 853,109 45.8% 7 

2.2.11 8/9/1999 1,567,960 719,740 45.9% 12 

2.3.13 8/9/1999 1,882,740 862,887 45.8% 0 

2.3.14 8/19/1999 1,904,491 872,778 45.8% 10 

2.0.38 8/25/1999 909,473 420,684 46.3% 6 

2.3.15 8/25/1999 1,926,489 882,782 45.8% 0 

2.2.12 8/26/1999 1,571,056 721,148 45.9% 1 

2.3.16 9/1/1999 1,948,739 892,900 45.8% 6 

2.3.17 9/7/1999 1,971,246 903,135 45.8% 6 

2.3.18 9/10/1999 1,994,010 913,487 45.8% 3 

2.3.19 10/4/1999 2,017,035 923,958 45.8% 24 

2.3.20 10/9/1999 2,040,323 934,548 45.8% 5 

2.3.21 10/11/1999 2,063,881 945,261 45.8% 2 

2.3.22 10/15/1999 2,087,705 956,095 45.8% 4 

2.2.13 10/20/1999 1,574,159 722,559 45.9% 5 

2.3.23 10/22/1999 2,111,803 967,054 45.8% 2 

2.3.24 10/27/1999 2,136,179 978,139 45.8% 5 

2.3.25 11/1/1999 2,160,835 989,351 45.8% 5 

2.3.26 11/7/1999 2,185,771 1,000,691 45.8% 6 

2.3.27 11/12/1999 2,210,994 1,012,161 45.8% 5 

2.3.28 11/12/1999 2,236,507 1,023,763 45.8% 0 

2.3.29 11/24/1999 2,262,312 1,035,498 45.8% 12 

2.3.30 12/7/1999 2,288,412 1,047,367 45.8% 13 

2.3.31 12/8/1999 2,314,811 1,059,372 45.8% 1 

2.3.32 12/14/1999 2,341,513 1,071,515 45.8% 6 

2.3.33 12/14/1999 2,368,521 1,083,797 45.8% 0 

2.3.34 12/21/1999 2,395,839 1,096,220 45.8% 7 

2.3.35 12/29/1999 2,423,470 1,108,785 45.8% 8 

2.2.14 1/4/2000 1,577,268 723,973 45.9% 6 

2.3.36 1/4/2000 2,451,417 1,121,494 45.7% 0 

2.3.37 1/6/2000 2,479,685 1,134,349 45.7% 2 

2.3.38 1/8/2000 2,508,277 1,147,351 45.7% 2 
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2.3.39 1/11/2000 2,537,196 1,160,502 45.7% 3 

2.3.40 1/21/2000 2,566,447 1,173,804 45.7% 10 

2.3.41 1/28/2000 2,596,034 1,187,259 45.7% 7 

2.3.42 2/1/2000 2,625,958 1,200,867 45.7% 4 

2.3.43 2/10/2000 2,656,227 1,214,632 45.7% 9 

2.3.44 2/12/2000 2,686,844 1,228,555 45.7% 2 

2.3.45 2/14/2000 2,717,810 1,242,637 45.7% 2 

2.3.46 2/17/2000 2,749,131 1,256,880 45.7% 3 

2.3.47 2/21/2000 2,780,812 1,271,287 45.7% 4 

2.3.48 2/27/2000 2,812,856 1,285,859 45.7% 6 

2.3.49 3/2/2000 2,845,267 1,300,598 45.7% 4 

2.3.50 3/7/2000 2,878,047 1,315,505 45.7% 5 

2.3.51 3/11/2000 2,911,206 1,330,584 45.7% 4 

2.2.15 5/4/2000 1,580,382 725,389 45.9% 54 

2.2.16 6/7/2000 1,583,505 726,809 45.9% 34 

2.2.17 9/4/2000 1,586,632 728,231 45.9% 89 

2.2.18 12/11/2000 1,589,765 729,656 45.9% 98 

2.4.0 1/4/2001 2,978,667 1,361,262 45.7% 24 

2.0.39 1/9/2001 912,577 422,335 46.3% 5 

2.4.1 1/30/2001 2,986,363 1,364,762 45.7% 21 

2.4.2 2/22/2001 2,994,080 1,368,271 45.7% 23 

2.2.19 3/25/2001 1,592,905 731,084 45.9% 31 

2.4.3 3/30/2001 3,001,816 1,371,789 45.7% 5 

2.4.4 4/28/2001 3,009,569 1,375,315 45.7% 29 

2.4.5 5/26/2001 3,017,345 1,378,851 45.7% 28 

2.4.6 7/4/2001 3,025,140 1,382,396 45.7% 39 

2.4.7 7/20/2001 3,032,958 1,385,951 45.7% 16 

2.4.8 8/11/2001 3,040,793 1,389,514 45.7% 22 

2.4.9 8/16/2001 3,048,648 1,393,086 45.7% 5 

2.4.10 9/23/2001 3,056,525 1,396,668 45.7% 38 

2.4.11 10/9/2001 3,064,421 1,400,259 45.7% 16 

2.4.12 10/11/2001 3,072,338 1,403,859 45.7% 2 

2.4.13 10/24/2001 3,080,274 1,407,468 45.7% 13 

2.2.20 11/2/2001 1,596,050 732,514 45.9% 9 

2.4.14 11/5/2001 3,088,232 1,411,087 45.7% 3 

2.4.15 11/23/2001 3,096,210 1,414,715 45.7% 18 

2.5.0 11/23/2001 3,633,072 1,658,854 45.7% 0 

2.4.16 11/26/2001 3,104,208 1,418,352 45.7% 3 
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2.5.1 12/17/2001 3,642,939 1,663,341 45.7% 21 

2.4.17 12/21/2001 3,112,227 1,421,999 45.7% 4 

2.5.2 1/15/2002 3,652,834 1,667,841 45.7% 25 

2.5.3 1/30/2002 3,662,754 1,672,352 45.7% 15 

2.5.4 2/11/2002 3,672,702 1,676,876 45.7% 12 

2.5.5 2/20/2002 3,682,677 1,681,412 45.7% 9 

2.4.18 2/25/2002 3,120,267 1,425,655 45.7% 5 

2.5.6 3/8/2002 3,692,680 1,685,961 45.7% 11 

2.5.7 3/18/2002 3,702,707 1,690,521 45.7% 10 

2.5.8 4/14/2002 3,712,763 1,695,094 45.7% 27 

2.5.9 4/22/2002 3,722,848 1,699,680 45.7% 8 

2.5.10 4/24/2002 3,732,959 1,704,278 45.7% 2 

2.5.11 4/29/2002 3,743,096 1,708,888 45.7% 5 

2.5.12 5/1/2002 3,753,262 1,713,511 45.7% 2 

2.5.13 5/3/2002 3,763,455 1,718,146 45.7% 2 

2.5.14 5/6/2002 3,773,673 1,722,793 45.7% 3 

2.5.15 5/9/2002 3,783,923 1,727,454 45.7% 3 

2.5.16 5/18/2002 3,794,199 1,732,127 45.7% 9 

2.2.21 5/20/2002 1,599,203 733,948 45.9% 2 

2.5.17 5/21/2002 3,804,501 1,736,812 45.7% 1 

2.5.18 5/25/2002 3,814,832 1,741,510 45.7% 4 

2.5.19 5/29/2002 3,825,192 1,746,221 45.7% 4 

2.5.20 6/3/2002 3,835,580 1,750,945 45.7% 5 

2.5.21 6/9/2002 3,845,994 1,755,681 45.6% 6 

2.5.22 6/17/2002 3,856,439 1,760,431 45.6% 8 

2.5.23 6/19/2002 3,866,911 1,765,193 45.6% 2 

2.5.24 6/20/2002 3,877,411 1,769,968 45.6% 1 

2.5.25 7/5/2002 3,887,940 1,774,756 45.6% 15 

2.5.26 7/16/2002 3,898,498 1,779,557 45.6% 11 

2.5.27 7/20/2002 3,909,081 1,784,370 45.6% 4 

2.5.28 7/24/2002 3,919,696 1,789,197 45.6% 4 

2.5.29 7/27/2002 3,930,339 1,794,037 45.6% 3 

2.5.30 8/1/2002 3,941,011 1,798,890 45.6% 5 

2.4.19 8/3/2002 3,128,326 1,429,320 45.7% 2 

2.5.31 8/11/2002 3,951,711 1,803,756 45.6% 8 

2.5.32 8/27/2002 3,962,442 1,808,636 45.6% 16 

2.5.33 8/31/2002 3,973,200 1,813,528 45.6% 4 

2.5.34 9/9/2002 3,983,988 1,818,434 45.6% 9 
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2.2.22 9/16/2002 1,602,361 735,384 45.9% 7 

2.5.35 9/16/2002 3,994,805 1,823,353 45.6% 0 

2.5.36 9/18/2002 4,005,650 1,828,285 45.6% 2 

2.5.37 9/20/2002 4,016,527 1,833,231 45.6% 2 

2.5.38 9/22/2002 4,027,431 1,838,190 45.6% 2 

2.5.39 9/27/2002 4,038,367 1,843,163 45.6% 5 

2.5.40 10/1/2002 4,049,329 1,848,148 45.6% 4 

2.5.41 10/7/2002 4,060,324 1,853,148 45.6% 6 

2.5.42 10/12/2002 4,071,348 1,858,161 45.6% 5 

2.5.43 10/16/2002 4,082,400 1,863,187 45.6% 4 

2.5.44 10/19/2002 4,093,483 1,868,227 45.6% 3 

2.5.45 10/31/2002 4,104,597 1,873,281 45.6% 12 

2.5.46 11/4/2002 4,115,739 1,878,348 45.6% 4 

2.5.47 11/11/2002 4,126,914 1,883,430 45.6% 7 

2.5.48 11/18/2002 4,138,116 1,888,524 45.6% 7 

2.5.49 11/22/2002 4,149,351 1,893,633 45.6% 4 

2.5.50 11/27/2002 4,160,614 1,898,755 45.6% 5 

2.4.20 11/28/2002 3,136,408 1,432,995 45.7% 1 

2.2.23 11/29/2002 1,605,525 736,823 45.9% 1 

2.5.51 12/10/2002 4,171,910 1,903,892 45.6% 11 

2.5.52 12/16/2002 4,183,235 1,909,042 45.6% 6 

2.5.53 12/24/2002 4,194,591 1,914,206 45.6% 8 

2.5.54 1/2/2003 4,205,977 1,919,384 45.6% 9 

2.5.55 1/9/2003 4,217,394 1,924,576 45.6% 7 

2.5.56 1/10/2003 4,228,842 1,929,782 45.6% 1 

2.5.57 1/13/2003 4,240,323 1,935,003 45.6% 3 

2.5.58 1/14/2003 4,251,833 1,940,237 45.6% 1 

2.5.59 1/17/2003 4,263,373 1,945,485 45.6% 3 

2.5.60 2/10/2003 4,274,947 1,950,748 45.6% 24 

2.5.61 2/15/2003 4,286,551 1,956,025 45.6% 5 

2.5.62 2/17/2003 4,298,186 1,961,316 45.6% 2 

2.5.63 2/24/2003 4,309,853 1,966,622 45.6% 7 

2.2.24 3/5/2003 1,608,696 738,265 45.9% 9 

2.5.64 3/5/2003 4,321,552 1,971,942 45.6% 0 

2.2.25 3/17/2003 1,611,872 739,709 45.9% 12 

2.5.65 3/17/2003 4,333,282 1,977,276 45.6% 0 

2.5.66 3/24/2003 4,345,044 1,982,625 45.6% 7 

2.5.67 4/7/2003 4,356,837 1,987,988 45.6% 14 
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2.5.68 4/20/2003 4,368,664 1,993,366 45.6% 13 

2.5.69 5/5/2003 4,380,521 1,998,758 45.6% 15 

2.5.70 5/27/2003 4,392,411 2,004,165 45.6% 22 

2.4.21 6/13/2003 3,144,509 1,436,679 45.7% 17 

2.5.71 6/14/2003 4,404,331 2,009,586 45.6% 1 

2.5.72 6/17/2003 4,416,285 2,015,022 45.6% 3 

2.5.73 6/22/2003 4,428,272 2,020,473 45.6% 5 

2.5.74 7/2/2003 4,440,289 2,025,938 45.6% 10 

2.5.75 7/10/2003 4,452,342 2,031,419 45.6% 8 

2.4.22 8/25/2003 3,152,632 1,440,373 45.7% 46 

2.4.23 11/28/2003 3,160,775 1,444,076 45.7% 95 

2.6.0 12/18/2003 4,476,542 2,042,424 45.6% 20 

2.4.24 1/5/2004 3,168,940 1,447,789 45.7% 18 

2.6.1 1/9/2004 4,488,692 2,047,949 45.6% 4 

2.6.2 2/4/2004 4,500,874 2,053,489 45.6% 26 

2.0.40 2/8/2004 913,716 423,324 46.3% 4 

2.4.25 2/18/2004 3,177,124 1,451,511 45.7% 10 

2.6.3 2/18/2004 4,513,089 2,059,044 45.6% 0 

2.2.26 2/24/2004 1,615,056 741,157 45.9% 6 

2.6.4 3/11/2004 4,525,338 2,064,614 45.6% 16 

2.6.5 4/4/2004 4,537,617 2,070,198 45.6% 24 

2.4.26 4/14/2004 3,185,331 1,455,243 45.7% 10 

2.6.6 5/10/2004 4,549,934 2,075,799 45.6% 26 

2.6.7 6/16/2004 4,562,281 2,081,414 45.6% 37 

2.4.27 8/7/2004 3,193,560 1,458,985 45.7% 52 

2.6.8 8/14/2004 4,574,661 2,087,044 45.6% 7 

2.6.8.1 8/14/2004 4,587,077 2,092,690 45.6% 0 

2.6.9 10/18/2004 4,599,526 2,098,351 45.6% 65 

2.4.28 11/17/2004 3,201,808 1,462,736 45.7% 30 

2.6.10 12/24/2004 4,612,007 2,104,027 45.6% 37 

2.4.29 1/19/2005 3,210,079 1,466,497 45.7% 26 

2.6.11 3/2/2005 4,624,522 2,109,718 45.6% 42 

2.6.11.1 3/9/2005 4,637,071 2,115,425 45.6% 7 

2.6.11.2 3/9/2005 4,649,656 2,121,148 45.6% 0 

2.6.11.3 3/13/2005 4,662,274 2,126,886 45.6% 4 

2.6.11.4 3/16/2005 4,674,925 2,132,639 45.6% 3 

2.6.11.5 3/19/2005 4,687,611 2,138,408 45.6% 3 

2.6.11.6 3/26/2005 4,700,332 2,144,193 45.6% 7 
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2.4.30 4/4/2005 3,218,369 1,470,267 45.7% 9 

2.6.11.7 4/7/2005 4,713,086 2,149,993 45.6% 3 

2.6.11.8 4/30/2005 4,725,876 2,155,809 45.6% 23 

2.6.11.9 5/11/2005 4,738,698 2,161,640 45.6% 11 

2.6.11.10 5/16/2005 4,751,558 2,167,488 45.6% 5 

2.6.11.11 5/27/2005 4,764,451 2,173,351 45.6% 11 

2.4.31 6/1/2005 3,226,681 1,474,047 45.7% 5 

2.6.11.12 6/12/2005 4,777,378 2,179,230 45.6% 11 

2.6.12 6/17/2005 4,790,342 2,185,125 45.6% 5 

2.6.12.1 6/22/2005 4,803,340 2,191,036 45.6% 5 

2.6.12.2 6/30/2005 4,816,373 2,196,963 45.6% 8 

2.6.12.3 7/15/2005 4,829,442 2,202,906 45.6% 15 

2.6.12.4 8/5/2005 4,842,546 2,208,865 45.6% 21 

2.6.12.5 8/15/2005 4,855,685 2,214,840 45.6% 10 

2.6.12.6 8/29/2005 4,868,861 2,220,832 45.6% 14 

2.6.13 8/29/2005 4,882,071 2,226,839 45.6% 0 

2.6.13.1 9/10/2005 4,895,317 2,232,863 45.6% 12 

2.6.13.2 9/18/2005 4,908,599 2,238,903 45.6% 8 

2.6.13.3 10/3/2005 4,921,917 2,244,959 45.6% 15 

2.6.13.4 10/10/2005 4,935,271 2,251,032 45.6% 7 

2.6.14 10/28/2005 4,962,088 2,263,227 45.6% 18 

2.6.14.1 11/9/2005 4,975,550 2,269,349 45.6% 12 

2.6.14.2 11/11/2005 4,989,050 2,275,488 45.6% 2 

2.4.32 11/16/2005 3,235,015 1,477,837 45.7% 5 

2.6.14.3 11/24/2005 5,002,587 2,281,644 45.6% 8 

2.6.13.5 12/15/2005 4,948,661 2,257,121 45.6% 21 

2.6.14.4 12/15/2005 5,016,159 2,287,816 45.6% 0 

2.6.14.5 12/27/2005 5,029,766 2,294,004 45.6% 12 

2.6.15 1/3/2006 5,070,815 2,312,671 45.6% 7 

2.6.14.6 1/8/2006 5,043,413 2,300,210 45.6% 5 

2.6.15.1 1/15/2006 5,084,572 2,318,927 45.6% 7 

2.6.15.2 1/31/2006 5,098,366 2,325,200 45.6% 16 

2.6.14.7 2/2/2006 5,057,096 2,306,432 45.6% 2 

2.6.15.3 2/6/2006 5,112,198 2,331,490 45.6% 4 

2.6.15.4 2/10/2006 5,126,067 2,337,797 45.6% 4 

2.6.15.5 3/1/2006 5,139,974 2,344,121 45.6% 19 

2.6.15.6 3/5/2006 5,153,918 2,350,462 45.6% 4 

2.6.16 3/20/2006 5,181,917 2,363,195 45.6% 15 
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2.6.15.7 3/28/2006 5,167,899 2,356,820 45.6% 8 

2.6.16.1 3/28/2006 5,195,976 2,369,588 45.6% 0 

2.6.16.2 4/7/2006 5,210,071 2,375,998 45.6% 10 

2.6.16.3 4/11/2006 5,224,204 2,382,425 45.6% 4 

2.6.16.4 4/11/2006 5,238,377 2,388,870 45.6% 0 

2.6.16.5 4/12/2006 5,252,587 2,395,332 45.6% 1 

2.6.16.6 4/17/2006 5,266,836 2,401,812 45.6% 5 

2.6.16.7 4/17/2006 5,281,123 2,408,309 45.6% 0 

2.6.16.8 4/18/2006 5,295,447 2,414,823 45.6% 1 

2.6.16.9 4/19/2006 5,309,814 2,421,356 45.6% 1 

2.6.16.10 4/24/2006 5,324,217 2,427,906 45.6% 5 

2.6.16.11 4/24/2006 5,338,658 2,434,473 45.6% 0 

2.6.16.12 5/1/2006 5,353,140 2,441,059 45.6% 7 

2.6.16.13 5/2/2006 5,367,660 2,447,662 45.6% 1 

2.6.16.14 5/5/2006 5,382,220 2,454,283 45.6% 3 

2.6.16.15 5/9/2006 5,396,819 2,460,922 45.6% 4 

2.6.16.16 5/11/2006 5,411,458 2,467,579 45.6% 2 

2.6.16.17 5/20/2006 5,426,136 2,474,254 45.6% 9 

2.6.16.18 5/22/2006 5,440,854 2,480,947 45.6% 2 

2.6.16.19 5/31/2006 5,455,612 2,487,658 45.6% 9 

2.6.16.20 6/5/2006 5,470,411 2,494,388 45.6% 5 

2.6.17 6/18/2006 6,146,058 2,801,640 45.6% 13 

2.6.16.21 6/20/2006 5,485,248 2,501,135 45.6% 2 

2.6.17.1 6/20/2006 6,162,724 2,809,219 45.6% 0 

2.6.16.22 6/22/2006 5,500,126 2,507,901 45.6% 2 

2.6.16.23 6/30/2006 5,515,044 2,514,685 45.6% 8 

2.6.17.2 6/30/2006 6,179,434 2,816,818 45.6% 0 

2.6.17.3 6/30/2006 6,196,189 2,824,437 45.6% 0 

2.6.16.24 7/6/2006 5,530,004 2,521,488 45.6% 6 

2.6.17.4 7/6/2006 6,212,991 2,832,078 45.6% 0 

2.6.16.25 7/15/2006 5,545,001 2,528,308 45.6% 9 

2.6.16.26 7/15/2006 5,560,042 2,535,148 45.6% 0 

2.6.17.5 7/15/2006 6,229,838 2,839,739 45.6% 0 

2.6.17.6 7/15/2006 6,246,730 2,847,421 45.6% 0 

2.6.16.27 7/17/2006 5,575,123 2,542,006 45.6% 2 

2.6.17.7 7/25/2006 6,263,667 2,855,123 45.6% 8 

2.6.17.8 8/7/2006 6,280,650 2,862,846 45.6% 13 

2.4.33 8/11/2006 3,243,369 1,481,636 45.7% 4 
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2.6.17.9 8/18/2006 6,297,681 2,870,591 45.6% 7 

2.4.33.1 8/19/2006 3,251,747 1,485,446 45.7% 1 

2.4.33.2 8/22/2006 3,260,145 1,489,265 45.7% 3 

2.6.17.10 8/22/2006 6,314,757 2,878,356 45.6% 0 

2.6.17.11 8/23/2006 6,331,878 2,886,142 45.6% 1 

2.6.16.28 8/25/2006 5,590,243 2,548,882 45.6% 2 

2.4.33.3 8/31/2006 3,268,565 1,493,094 45.7% 6 

2.6.17.12 9/8/2006 6,349,046 2,893,949 45.6% 8 

2.6.17.13 9/9/2006 6,366,262 2,901,778 45.6% 1 

2.6.16.29 9/13/2006 5,605,405 2,555,777 45.6% 4 

2.6.18 9/20/2006 6,400,830 2,917,498 45.6% 7 

2.6.17.14 10/13/2006 6,383,521 2,909,627 45.6% 23 

2.6.18.1 10/14/2006 6,418,184 2,925,390 45.6% 1 

2.6.16.30 11/2/2006 5,620,607 2,562,690 45.6% 19 

2.6.18.2 11/4/2006 6,435,587 2,933,304 45.6% 2 

2.6.16.31 11/7/2006 5,635,853 2,569,623 45.6% 3 

2.6.16.32 11/15/2006 5,651,138 2,576,574 45.6% 8 

2.4.33.4 11/19/2006 3,277,007 1,496,933 45.7% 4 

2.6.18.3 11/19/2006 6,453,034 2,941,238 45.6% 0 

2.6.16.33 11/27/2006 5,666,465 2,583,544 45.6% 8 

2.6.16.34 11/29/2006 5,681,832 2,590,532 45.6% 2 

2.6.18.4 11/29/2006 6,470,531 2,949,195 45.6% 0 

2.6.19 11/29/2006 6,558,722 2,989,300 45.6% 0 

2.6.18.5 12/2/2006 6,488,075 2,957,173 45.6% 3 

2.6.16.35 12/6/2006 5,697,242 2,597,540 45.6% 4 

2.6.19.1 12/11/2006 6,576,506 2,997,387 45.6% 5 

2.6.16.36 12/13/2006 5,712,692 2,604,566 45.6% 2 

2.4.33.5 12/14/2006 3,285,469 1,500,781 45.7% 1 

2.6.18.6 12/17/2006 6,505,665 2,965,172 45.6% 3 

2.4.33.6 12/18/2006 3,293,955 1,504,640 45.7% 1 

2.4.33.7 12/22/2006 3,302,461 1,508,508 45.7% 4 

2.4.34 12/23/2006 3,310,991 1,512,387 45.7% 1 

2.6.16.37 12/28/2006 5,728,186 2,611,612 45.6% 5 

2.6.19.2 1/10/2007 6,594,335 3,005,495 45.6% 13 

2.6.16.38 1/20/2007 5,743,722 2,618,677 45.6% 10 

2.6.16.39 1/30/2007 5,759,298 2,625,760 45.6% 10 

2.4.34.1 2/3/2007 3,319,540 1,516,275 45.7% 4 

2.6.20 2/4/2007 6,702,330 3,054,606 45.6% 1 
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2.6.19.3 2/5/2007 6,612,213 3,013,625 45.6% 1 

2.6.16.40 2/10/2007 5,774,917 2,632,863 45.6% 5 

2.6.16.41 2/17/2007 5,790,579 2,639,985 45.6% 7 

2.6.18.7 2/20/2007 6,523,303 2,973,193 45.6% 3 

2.6.19.4 2/20/2007 6,630,139 3,021,777 45.6% 0 

2.6.20.1 2/20/2007 6,720,501 3,062,869 45.6% 0 

2.6.18.8 2/23/2007 6,540,990 2,981,236 45.6% 3 

2.6.19.5 2/24/2007 6,648,114 3,029,951 45.6% 1 

2.6.16.42 2/25/2007 5,806,284 2,647,127 45.6% 1 

2.6.16.43 3/2/2007 5,822,031 2,654,288 45.6% 5 

2.6.19.6 3/3/2007 6,666,137 3,038,147 45.6% 1 

2.6.19.7 3/3/2007 6,684,211 3,046,366 45.6% 0 

2.6.20.2 3/9/2007 6,738,722 3,071,155 45.6% 6 

2.6.16.44 3/20/2007 5,837,820 2,661,468 45.6% 11 

2.6.20.4 3/23/2007 6,775,308 3,087,793 45.6% 3 

2.4.34.2 3/24/2007 3,328,112 1,520,173 45.7% 1 

2.6.16.45 3/24/2007 5,853,650 2,668,667 45.6% 0 

2.6.16.46 3/31/2007 5,869,525 2,675,886 45.6% 7 

2.6.20.5 4/6/2007 6,793,675 3,096,145 45.6% 6 

2.6.20.6 4/6/2007 6,812,093 3,104,521 45.6% 0 

2.6.16.47 4/13/2007 5,885,444 2,683,125 45.6% 7 

2.6.20.7 4/13/2007 6,830,561 3,112,919 45.6% 0 

2.6.16.48 4/15/2007 5,901,404 2,690,383 45.6% 2 

2.4.34.3 4/22/2007 3,336,708 1,524,082 45.7% 7 

2.4.34.4 4/22/2007 3,345,324 1,528,000 45.7% 0 

2.6.16.49 4/22/2007 5,917,406 2,697,660 45.6% 0 

2.6.20.8 4/25/2007 6,849,076 3,121,339 45.6% 3 

2.6.20.9 4/26/2007 6,867,645 3,129,783 45.6% 1 

2.6.21 4/26/2007 7,113,638 3,241,649 45.6% 0 

2.6.20.10 4/27/2007 6,886,261 3,138,249 45.6% 1 

2.6.21.1 4/27/2007 7,132,921 3,250,418 45.6% 0 

2.6.20.11 5/2/2007 6,904,931 3,146,739 45.6% 5 

2.6.16.50 5/3/2007 5,933,454 2,704,958 45.6% 1 

2.6.16.51 5/9/2007 5,949,544 2,712,275 45.6% 6 

2.6.21.2 5/23/2007 7,152,257 3,259,211 45.6% 14 

2.6.20.12 5/24/2007 6,923,649 3,155,251 45.6% 1 

2.6.21.3 5/24/2007 7,171,643 3,268,027 45.6% 0 

2.6.16.52 5/30/2007 5,965,678 2,719,612 45.6% 6 
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2.4.34.5 6/6/2007 3,353,964 1,531,929 45.7% 7 

2.6.20.13 6/7/2007 6,942,417 3,163,786 45.6% 1 

2.6.21.4 6/7/2007 7,191,084 3,276,868 45.6% 0 

2.6.20.14 6/11/2007 6,961,236 3,172,344 45.6% 4 

2.6.21.5 6/11/2007 7,210,576 3,285,732 45.6% 0 

2.6.20.15 7/7/2007 6,980,108 3,180,926 45.6% 26 

2.6.21.6 7/7/2007 7,230,121 3,294,620 45.6% 0 

2.6.22 7/8/2007 7,269,371 3,312,469 45.6% 1 

2.6.22.1 7/10/2007 7,289,074 3,321,429 45.6% 2 

2.4.34.6 7/22/2007 3,362,623 1,535,867 45.7% 12 

2.6.16.53 7/25/2007 5,981,857 2,726,969 45.6% 3 

2.4.35 7/26/2007 3,371,307 1,539,816 45.7% 1 

2.6.21.7 8/4/2007 7,249,719 3,303,532 45.6% 9 

2.6.22.2 8/9/2007 7,308,832 3,330,414 45.6% 5 

2.4.35.1 8/15/2007 3,380,013 1,543,775 45.7% 6 

2.6.22.3 8/15/2007 7,328,643 3,339,423 45.6% 0 

2.6.20.16 8/16/2007 6,999,028 3,189,530 45.6% 1 

2.6.22.4 8/21/2007 7,348,506 3,348,456 45.6% 5 

2.6.22.5 8/22/2007 7,368,425 3,357,514 45.6% 1 

2.6.20.17 8/25/2007 7,018,001 3,198,158 45.6% 3 

2.6.20.18 8/28/2007 7,037,027 3,206,810 45.6% 3 

2.6.22.6 8/31/2007 7,388,398 3,366,597 45.6% 3 

2.4.35.2 9/8/2007 3,388,741 1,547,744 45.7% 8 

2.6.20.19 9/8/2007 7,056,101 3,215,484 45.6% 0 

2.6.22.7 9/21/2007 7,408,425 3,375,704 45.6% 13 

2.4.35.3 9/23/2007 3,397,491 1,551,723 45.7% 2 

2.6.20.20 9/23/2007 7,075,228 3,224,182 45.6% 0 

2.6.22.8 9/25/2007 7,428,504 3,384,835 45.6% 2 

2.6.22.9 9/26/2007 7,448,638 3,393,991 45.6% 1 

2.6.16.54 10/6/2007 5,998,076 2,734,345 45.6% 10 

2.6.23 10/9/2007 7,673,747 3,496,360 45.6% 3 

2.6.22.10 10/10/2007 7,468,827 3,403,172 45.6% 1 

2.6.16.55 10/12/2007 6,014,342 2,741,742 45.6% 2 

2.6.23.1 10/12/2007 7,694,545 3,505,818 45.6% 0 

2.6.20.3 10/17/2007 6,756,991 3,079,463 45.6% 5 

2.6.20.21 10/17/2007 7,094,408 3,232,904 45.6% 0 

2.6.16.56 11/1/2007 6,030,652 2,749,159 45.6% 15 

2.6.22.11 11/2/2007 7,489,071 3,412,378 45.6% 1 
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2.6.16.57 11/5/2007 6,047,004 2,756,595 45.6% 3 

2.6.22.12 11/5/2007 7,509,370 3,421,609 45.6% 0 

2.6.22.13 11/16/2007 7,529,724 3,430,865 45.6% 11 

2.6.23.2 11/16/2007 7,715,399 3,515,301 45.6% 0 

2.6.23.3 11/16/2007 7,736,311 3,524,811 45.6% 0 

2.6.23.4 11/16/2007 7,757,276 3,534,345 45.6% 0 

2.6.23.5 11/16/2007 7,778,301 3,543,906 45.6% 0 

2.6.23.6 11/16/2007 7,799,383 3,553,493 45.6% 0 

2.6.23.7 11/16/2007 7,820,520 3,563,105 45.6% 0 

2.6.23.8 11/16/2007 7,841,716 3,572,744 45.6% 0 

2.4.35.4 11/17/2007 3,406,265 1,555,713 45.7% 1 

2.6.22.14 11/21/2007 7,550,133 3,440,146 45.6% 4 

2.6.23.9 11/26/2007 7,862,967 3,582,408 45.6% 5 

2.6.22.15 12/14/2007 7,570,597 3,449,452 45.6% 18 

2.6.23.10 12/14/2007 7,884,277 3,592,099 45.6% 0 

2.6.23.11 12/15/2007 7,905,645 3,601,816 45.6% 1 

2.4.35.5 12/16/2007 3,415,061 1,559,713 45.7% 1 

2.6.23.12 12/18/2007 7,927,070 3,611,559 45.6% 2 

2.4.36 1/1/2008 3,423,879 1,563,723 45.7% 14 

2.6.16.58 1/6/2008 6,063,402 2,764,052 45.6% 5 

2.6.23.13 1/9/2008 7,948,554 3,621,329 45.6% 3 

2.6.22.16 1/14/2008 7,591,116 3,458,783 45.6% 5 

2.6.23.14 1/14/2008 7,970,096 3,631,125 45.6% 0 

2.6.16.59 1/19/2008 6,079,844 2,771,529 45.6% 5 

2.6.24 1/24/2008 8,056,844 3,670,574 45.6% 5 

2.6.16.60 1/27/2008 6,096,330 2,779,026 45.6% 3 

2.6.22.17 2/6/2008 7,611,689 3,468,139 45.6% 10 

2.6.23.15 2/8/2008 7,991,694 3,640,947 45.6% 2 

2.6.24.1 2/8/2008 8,078,680 3,680,504 45.6% 0 

2.6.22.18 2/11/2008 7,632,318 3,477,520 45.6% 3 

2.6.23.16 2/11/2008 8,013,352 3,650,796 45.6% 0 

2.6.24.2 2/11/2008 8,100,573 3,690,460 45.6% 0 

2.4.36.1 2/16/2008 3,432,719 1,567,743 45.7% 5 

2.4.36.2 2/24/2008 3,441,583 1,571,774 45.7% 8 

2.6.22.19 2/26/2008 7,653,004 3,486,927 45.6% 2 

2.6.23.17 2/26/2008 8,035,069 3,660,672 45.6% 0 

2.6.24.3 2/26/2008 8,122,526 3,700,443 45.6% 0 

2.6.24.4 3/24/2008 8,144,538 3,710,453 45.6% 27 
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2.6.25 4/17/2008 8,233,182 3,750,764 45.6% 24 

2.4.36.3 4/19/2008 3,450,469 1,575,815 45.7% 2 

2.6.24.5 4/19/2008 8,166,609 3,720,490 45.6% 0 

2.6.24.6 5/1/2008 8,188,740 3,730,554 45.6% 12 

2.6.25.1 5/1/2008 8,255,493 3,760,910 45.6% 0 

2.4.36.4 5/7/2008 3,459,377 1,579,866 45.7% 6 

2.6.24.7 5/7/2008 8,210,932 3,740,646 45.6% 0 

2.6.25.2 5/7/2008 8,277,865 3,771,084 45.6% 0 

2.6.25.3 5/10/2008 8,300,297 3,781,285 45.6% 3 

2.6.25.4 5/15/2008 8,322,791 3,791,514 45.6% 5 

2.4.36.5 6/1/2008 3,468,309 1,583,928 45.7% 17 

2.4.36.6 6/6/2008 3,477,266 1,588,001 45.7% 5 

2.6.25.5 6/6/2008 8,345,344 3,801,770 45.6% 0 

2.6.25.6 6/9/2008 8,367,958 3,812,054 45.6% 3 

2.6.25.7 6/16/2008 8,390,635 3,822,366 45.6% 7 

2.6.25.8 6/22/2008 8,413,372 3,832,706 45.6% 6 

2.6.25.9 6/24/2008 8,436,171 3,843,074 45.6% 2 

2.6.25.10 7/3/2008 8,459,032 3,853,470 45.6% 9 

2.6.25.11 7/13/2008 8,481,955 3,863,894 45.6% 10 

2.6.26 7/13/2008 8,714,615 3,969,697 45.6% 0 

2.6.16.61 7/16/2008 6,112,862 2,786,544 45.6% 3 

2.6.16.62 7/21/2008 6,129,438 2,794,082 45.6% 5 

2.6.25.12 7/24/2008 8,504,939 3,874,346 45.6% 3 

2.6.25.13 7/28/2008 8,527,984 3,884,826 45.6% 4 

2.6.25.14 8/1/2008 8,551,093 3,895,335 45.6% 4 

2.6.26.1 8/1/2008 8,738,228 3,980,435 45.6% 0 

2.6.25.15 8/6/2008 8,574,264 3,905,872 45.6% 5 

2.6.26.2 8/6/2008 8,761,907 3,991,203 45.6% 0 

2.6.25.16 8/20/2008 8,597,499 3,916,438 45.6% 14 

2.6.26.3 8/20/2008 8,785,647 4,001,999 45.6% 0 

2.4.36.7 9/7/2008 3,486,242 1,592,083 45.7% 18 

2.6.25.17 9/8/2008 8,620,795 3,927,032 45.6% 1 

2.6.26.4 9/8/2008 8,809,454 4,012,825 45.6% 0 

2.6.26.5 9/8/2008 8,833,324 4,023,680 45.6% 0 

2.6.25.18 10/9/2008 8,644,155 3,937,655 45.6% 31 

2.6.26.6 10/9/2008 8,857,258 4,034,564 45.6% 0 

2.6.27 10/9/2008 8,929,453 4,067,395 45.6% 0 

2.6.27.1 10/15/2008 8,953,647 4,078,397 45.6% 6 
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2.6.27.2 10/18/2008 8,977,908 4,089,430 45.5% 3 

2.4.36.8 10/19/2008 3,495,245 1,596,177 45.7% 1 

2.6.25.19 10/22/2008 8,667,579 3,948,307 45.6% 3 

2.6.26.7 10/22/2008 8,881,258 4,045,478 45.6% 0 

2.6.27.3 10/22/2008 9,002,234 4,100,492 45.5% 0 

2.6.27.4 10/26/2008 9,026,625 4,111,584 45.5% 4 

2.6.27.5 11/7/2008 9,051,082 4,122,706 45.5% 12 

2.4.36.9 11/9/2008 3,504,267 1,600,280 45.7% 2 

2.6.25.20 11/10/2008 8,691,064 3,958,987 45.6% 1 

2.6.26.8 11/10/2008 8,905,324 4,056,422 45.6% 0 

2.6.27.6 11/13/2008 9,075,605 4,133,858 45.5% 3 

2.6.27.7 11/20/2008 9,100,197 4,145,041 45.5% 7 

2.4.37 12/2/2008 3,513,316 1,604,395 45.7% 12 

2.6.27.8 12/5/2008 9,124,854 4,156,254 45.5% 3 

2.6.27.9 12/14/2008 9,149,578 4,167,497 45.5% 9 

2.6.27.10 12/18/2008 9,174,367 4,178,770 45.5% 4 

2.6.28 12/24/2008 10,446,612 4,757,326 45.5% 6 

2.6.27.11 1/14/2009 9,199,224 4,190,074 45.5% 21 

2.6.27.12 1/18/2009 9,224,148 4,201,408 45.5% 4 

2.6.28.1 1/18/2009 10,474,910 4,770,195 45.5% 0 

2.6.27.13 1/25/2009 9,249,142 4,212,774 45.5% 7 

2.6.28.2 1/25/2009 10,503,286 4,783,099 45.5% 0 

2.6.27.14 2/2/2009 9,274,202 4,224,170 45.5% 8 

2.6.28.3 2/2/2009 10,531,737 4,796,037 45.5% 0 

2.6.27.15 2/6/2009 9,299,327 4,235,596 45.5% 4 

2.6.28.4 2/6/2009 10,560,267 4,809,011 45.5% 0 

2.6.27.16 2/12/2009 9,324,523 4,247,054 45.5% 6 

2.6.28.5 2/12/2009 10,588,874 4,822,020 45.5% 0 

2.6.27.17 2/13/2009 9,349,788 4,258,543 45.5% 1 

2.6.27.18 2/17/2009 9,375,118 4,270,062 45.5% 4 

2.6.28.6 2/17/2009 10,617,557 4,835,064 45.5% 0 

2.6.27.19 2/20/2009 9,400,519 4,281,613 45.5% 3 

2.6.28.7 2/20/2009 10,646,318 4,848,143 45.5% 0 

2.6.27.20 3/17/2009 9,425,987 4,293,195 45.5% 25 

2.6.28.8 3/17/2009 10,675,158 4,861,258 45.5% 0 

2.6.27.21 3/23/2009 9,451,527 4,304,809 45.5% 6 

2.6.28.9 3/23/2009 10,704,075 4,874,408 45.5% 0 

2.6.29 3/23/2009 10,762,144 4,900,815 45.5% 0 
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2.6.29.1 4/2/2009 10,791,296 4,914,072 45.5% 10 

2.4.37.1 4/19/2009 3,522,387 1,608,520 45.7% 17 

2.6.29.2 4/27/2009 10,820,527 4,927,365 45.5% 8 

2.6.27.22 5/2/2009 9,477,134 4,316,454 45.5% 5 

2.6.28.10 5/2/2009 10,733,069 4,887,593 45.5% 0 

2.6.27.23 5/8/2009 9,502,810 4,328,130 45.5% 6 

2.6.29.3 5/8/2009 10,849,838 4,940,694 45.5% 0 

2.6.27.24 5/20/2009 9,528,555 4,339,838 45.5% 12 

2.6.29.4 5/20/2009 10,879,227 4,954,059 45.5% 0 

2.4.37.2 6/7/2009 3,531,480 1,612,655 45.7% 18 

2.6.30 6/10/2009 10,967,874 4,994,371 45.5% 3 

2.6.27.25 6/12/2009 9,554,372 4,351,578 45.5% 2 

2.6.29.5 6/15/2009 10,908,696 4,967,460 45.5% 3 

2.6.27.26 7/2/2009 9,580,256 4,363,349 45.5% 17 

2.6.29.6 7/2/2009 10,938,244 4,980,897 45.5% 0 

2.6.30.1 7/2/2009 10,997,582 5,007,881 45.5% 0 

2.4.37.3 7/19/2009 3,540,597 1,616,801 45.7% 17 

2.6.27.27 7/20/2009 9,606,211 4,375,152 45.5% 1 

2.6.30.2 7/20/2009 11,027,372 5,021,428 45.5% 0 

2.6.27.28 7/24/2009 9,632,236 4,386,987 45.5% 4 

2.6.30.3 7/24/2009 11,057,241 5,035,011 45.5% 0 

2.4.37.4 7/26/2009 3,549,738 1,620,958 45.7% 2 

2.6.27.29 7/30/2009 9,658,334 4,398,855 45.5% 4 

2.6.30.4 7/30/2009 11,087,193 5,048,632 45.5% 0 

2.4.37.5 8/13/2009 3,558,904 1,625,126 45.7% 14 

2.6.27.30 8/16/2009 9,684,500 4,410,754 45.5% 3 

2.6.30.5 8/16/2009 11,117,225 5,062,289 45.5% 0 

2.6.27.31 8/17/2009 9,710,736 4,422,685 45.5% 1 

2.6.27.32 9/9/2009 9,737,045 4,434,649 45.5% 23 

2.6.27.33 9/9/2009 9,763,424 4,446,645 45.5% 0 

2.6.30.6 9/9/2009 11,147,336 5,075,982 45.5% 0 

2.6.31 9/9/2009 11,299,129 5,145,010 45.5% 0 

2.4.37.6 9/13/2009 3,568,091 1,629,304 45.7% 4 

2.6.27.34 9/15/2009 9,789,876 4,458,674 45.5% 2 

2.6.30.7 9/15/2009 11,177,531 5,089,713 45.5% 0 

2.6.27.35 9/24/2009 9,816,398 4,470,735 45.5% 9 

2.6.30.8 9/24/2009 11,207,809 5,103,482 45.5% 0 

2.6.31.1 9/24/2009 11,329,732 5,158,927 45.5% 0 
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2.6.27.36 10/5/2009 9,842,990 4,482,828 45.5% 11 

2.6.30.9 10/5/2009 11,238,166 5,117,287 45.5% 0 

2.6.31.2 10/5/2009 11,360,421 5,172,883 45.5% 0 

2.6.31.3 10/7/2009 11,391,192 5,186,876 45.5% 2 

2.6.27.37 10/12/2009 9,869,658 4,494,955 45.5% 5 

2.6.31.4 10/12/2009 11,422,046 5,200,907 45.5% 0 

2.6.27.38 10/22/2009 9,896,395 4,507,114 45.5% 10 

2.6.31.5 10/22/2009 11,452,984 5,214,976 45.5% 0 

2.4.37.7 11/7/2009 3,577,303 1,633,493 45.7% 16 

2.6.27.39 11/10/2009 9,923,206 4,519,306 45.5% 3 

2.6.31.6 11/10/2009 11,484,005 5,229,083 45.5% 0 

2.6.32 12/3/2009 11,766,999 5,357,775 45.5% 23 

2.6.30.10 12/4/2009 11,268,607 5,131,130 45.5% 1 

2.6.27.40 12/8/2009 9,950,088 4,531,531 45.5% 4 

2.6.27.41 12/8/2009 9,977,046 4,543,790 45.5% 0 

2.6.27.42 12/8/2009 10,004,074 4,556,081 45.5% 0 

2.6.31.7 12/8/2009 11,515,110 5,243,228 45.5% 0 

2.6.31.8 12/14/2009 11,546,298 5,257,411 45.5% 6 

2.6.32.1 12/14/2009 11,798,869 5,372,268 45.5% 0 

2.6.31.9 12/18/2009 11,577,573 5,271,633 45.5% 4 

2.6.32.2 12/18/2009 11,830,827 5,386,801 45.5% 0 

2.6.27.43 1/6/2010 10,031,174 4,568,405 45.5% 19 

2.6.31.10 1/6/2010 11,608,930 5,285,893 45.5% 0 

2.6.32.3 1/6/2010 11,862,869 5,401,372 45.5% 0 

2.6.31.11 1/7/2010 11,640,374 5,300,192 45.5% 1 

2.6.27.44 1/18/2010 10,058,350 4,580,763 45.5% 11 

2.6.31.12 1/18/2010 11,671,901 5,314,529 45.5% 0 

2.6.32.4 1/18/2010 11,894,998 5,415,983 45.5% 0 

2.6.32.5 1/22/2010 11,927,216 5,430,634 45.5% 4 

2.6.32.6 1/25/2010 11,959,519 5,445,324 45.5% 3 

2.6.27.45 1/28/2010 10,085,600 4,593,155 45.5% 3 

2.6.32.7 1/28/2010 11,991,913 5,460,055 45.5% 0 

2.4.37.8 1/31/2010 3,586,539 1,637,693 45.7% 3 

2.4.37.9 2/1/2010 3,595,796 1,641,903 45.7% 1 

2.6.32.8 2/9/2010 12,024,390 5,474,824 45.5% 8 

2.6.32.9 2/23/2010 12,056,957 5,489,634 45.5% 14 

2.6.33 2/24/2010 12,692,741 5,778,758 45.5% 1 

2.6.32.10 3/15/2010 12,089,612 5,504,484 45.5% 19 
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2.6.33.1 3/15/2010 12,727,117 5,794,391 45.5% 0 

2.6.27.46 4/1/2010 10,112,922 4,605,580 45.5% 17 

2.6.31.13 4/1/2010 11,703,516 5,328,906 45.5% 0 

2.6.32.11 4/1/2010 12,122,355 5,519,374 45.5% 0 

2.6.33.2 4/1/2010 12,761,585 5,810,065 45.5% 0 

2.6.32.12 4/26/2010 12,155,188 5,534,305 45.5% 25 

2.6.33.3 4/26/2010 12,796,146 5,825,782 45.5% 0 

2.6.32.13 5/12/2010 12,188,107 5,549,275 45.5% 16 

2.6.33.4 5/12/2010 12,830,800 5,841,541 45.5% 0 

2.6.34 5/16/2010 12,970,358 5,905,005 45.5% 4 

2.6.27.47 5/26/2010 10,140,317 4,618,038 45.5% 10 

2.6.32.14 5/26/2010 12,221,119 5,564,287 45.5% 0 

2.6.33.5 5/26/2010 12,865,549 5,857,343 45.5% 0 

2.6.32.15 6/1/2010 12,254,218 5,579,339 45.5% 6 

2.6.27.48 7/5/2010 10,167,787 4,630,530 45.5% 34 

2.6.31.14 7/5/2010 11,735,215 5,343,321 45.5% 0 

2.6.32.16 7/5/2010 12,287,405 5,594,431 45.5% 0 

2.6.33.6 7/5/2010 12,900,390 5,873,187 45.5% 0 

2.6.34.1 7/5/2010 13,005,485 5,920,979 45.5% 0 

2.6.35 8/1/2010 13,254,040 6,034,010 45.5% 27 

2.6.27.49 8/2/2010 10,195,332 4,643,056 45.5% 1 

2.6.32.17 8/2/2010 12,320,685 5,609,565 45.5% 0 

2.6.33.7 8/2/2010 12,935,328 5,889,075 45.5% 0 

2.6.34.2 8/2/2010 13,040,704 5,936,995 45.5% 0 

2.6.27.50 8/10/2010 10,222,951 4,655,616 45.5% 8 

2.6.32.18 8/10/2010 12,354,053 5,624,739 45.5% 0 

2.6.34.3 8/10/2010 13,076,022 5,953,056 45.5% 0 

2.6.35.1 8/10/2010 13,289,932 6,050,332 45.5% 0 

2.6.27.51 8/13/2010 10,250,645 4,668,210 45.5% 3 

2.6.32.19 8/13/2010 12,387,511 5,639,954 45.5% 0 

2.6.34.4 8/13/2010 13,111,432 5,969,159 45.5% 0 

2.6.35.2 8/13/2010 13,325,923 6,066,699 45.5% 0 

2.6.27.52 8/20/2010 10,278,414 4,680,838 45.5% 7 

2.6.32.20 8/20/2010 12,421,061 5,655,211 45.5% 0 

2.6.34.5 8/20/2010 13,146,940 5,985,306 45.5% 0 

2.6.35.3 8/20/2010 13,362,011 6,083,110 45.5% 0 

2.6.27.53 8/27/2010 10,306,258 4,693,500 45.5% 7 

2.6.32.21 8/27/2010 12,454,701 5,670,509 45.5% 0 
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2.6.34.6 8/27/2010 13,182,544 6,001,497 45.5% 0 

2.6.35.4 8/27/2010 13,398,195 6,099,565 45.5% 0 

2.4.37.10 9/6/2010 3,605,081 1,646,125 45.7% 10 

2.6.34.7 9/13/2010 13,218,242 6,017,731 45.5% 7 

2.6.27.54 9/20/2010 10,334,177 4,706,196 45.5% 7 

2.6.32.22 9/20/2010 12,488,431 5,685,848 45.5% 0 

2.6.35.5 9/20/2010 13,434,479 6,116,065 45.5% 0 

2.6.32.23 9/27/2010 12,522,254 5,701,229 45.5% 7 

2.6.35.6 9/27/2010 13,470,861 6,132,610 45.5% 0 

2.6.35.7 9/29/2010 13,507,340 6,149,199 45.5% 2 

2.6.32.24 10/1/2010 12,556,167 5,716,651 45.5% 2 

2.6.36 10/20/2010 13,617,372 6,199,236 45.5% 19 

2.6.27.55 10/29/2010 10,362,172 4,718,927 45.5% 9 

2.6.32.25 10/29/2010 12,590,173 5,732,115 45.5% 0 

2.6.35.8 10/29/2010 13,543,918 6,165,833 45.5% 0 

2.6.27.56 11/22/2010 10,390,242 4,731,692 45.5% 24 

2.6.32.26 11/22/2010 12,624,270 5,747,621 45.5% 0 

2.6.35.9 11/22/2010 13,580,596 6,182,512 45.5% 0 

2.6.36.1 11/22/2010 13,654,249 6,216,006 45.5% 0 

2.6.27.57 12/9/2010 10,418,390 4,744,492 45.5% 17 

2.6.32.27 12/9/2010 12,658,460 5,763,169 45.5% 0 

2.6.36.2 12/9/2010 13,691,225 6,232,821 45.5% 0 

2.4.37.11 12/18/2010 3,614,387 1,650,357 45.7% 9 

2.6.37 1/5/2011 13,802,752 6,283,538 45.5% 18 

2.6.36.3 1/7/2011 13,728,300 6,249,681 45.5% 2 

2.6.36.4 2/17/2011 13,765,476 6,266,587 45.5% 41 

2.6.37.1 2/17/2011 13,840,130 6,300,536 45.5% 0 

Total 
 

4,410,970,884 2,012,427,320 
 

6185 

Average 
 

4,528,718 2,066,147 46.0% 6.4 

Min 
 

165,768 83,696 38.2% 0 

Max 
 

13,840,130 6,300,536 50.5% 98 
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APPENDIX D 

SCHEME LANGUAGE AND EXCEL MACRO SCRIPTS 

This appendix gives the source code scripts used to obtain the slice size of the 

CodeSurfer tool.  The slicing process was required to collect the slice size in order to 

perform slice intersection calculations.  The srcSlice tool was designed to generate the 

slice size automatically in number of statements.   

A.1 Slice Size Data Generation Script (Scheme Code) 

CodeSurfer has API which allows functional programming to be used as an 

extension of the capabilities of the tool and also to allow user to perform user-defined 

operation and obtain user-defined results.  The script to obtain the slice size data from 

CodeSurfer was written in functional programming language Scheme.   

The algorithm of the following script is as follows: 

1. Get a list of all program points in the PDG 

2. Perform slicing using the nodes from the list  

3. Calculate the number of program points in the slice  

4. Output the size of the slice into a specified file 

5. Repeat from step 2 to 4 until end of list. 

To perform slicing on a particular code, the project for that program needs to be open 

in CodeSurfer.  Once CodeSurfer has completed the slicing process it will output a list of 

statement numbers that included in each file in the system.  It should be noted that the 
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slice sizes are not calculated automatically and will need removing duplicate lines before 

the slice size for each file can be calculated.  The filtering is done using EXCEL 

automated analysis macros developed which will be detailed in Appendix A.2. 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; Name: (ex:get-displayed-set name) 

;; Args: name : SYMBOL 

;; Returns: PDG_VERTEX_SET | #f 

;; Action: 

;; Returns the points associated with the Displayed Set specified 

;; by name. If the there is no Displayed Set with this name, 

returns 

;; #f. 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; example: (ex:get-displayed-set 'query-results) 

(define (ex:get-displayed-set name) 

(dht:get-pdgvs ss:main-project name)) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; Name: (ex:set-displayed-set name vs) 

;; Args: name : SYMBOL 

;; vs : PDG_VERTEX_SET 

;; PreCond: name must be an existing displayed set. 

;; Returns: UNDEFINED 

;; Action: 

;; Sets vs to be the points associated with the Displayed Set 

specified 

;; by name. 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; example: (ex:set-displayed-set 'query-results (pdg-vertex-set-

create)) 

;; clears the query results. 

(define (ex:set-displayed-set name vs) 

(vi:set-displayed-set name vs)) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; Name: (ex:sdg-sourcefile-vertex vs) 

;; Args: vs: an empty pdg-vertex-set 

;; Returns: PDG_VERTEX_SET 

;; Action: 

;; Return all the vertex in the source file. 
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;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

(define (ex:sdg-sourcefile-vertex) 

(define vs (pdg-vertex-set-create)) 

(let ((pdg-list (ex:prj-sourcefile-pdglist))) 

(for-each 

(lambda (pdg) 

(pdg-vertex-set-union! vs (pdg-vertices pdg)) 

) 

pdg-list)) 

vs) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; Name: (ex:prj-sourcefile-pdglist) 

;; Returns: a list of user defined pdgs in source files 

;; Action: 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

(define (ex:prj-sourcefile-pdglist) 

(let ((pdg-list '( )) 

(file-list (prj:contribute-nonlib-source-files ss:main-project))) 

(for-each (lambda (file) 

(let ((filepdgs (file:functions-in-file file))) 

(set! pdg-list (append pdg-list filepdgs)))) 

file-list) 

pdg-list)) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; Name: (ex:sdg-source-vertex-byprj vset) 

;; Args: vset : vertex-set of sdg 

;; prjname : project name 

;; Returns: all vertices of prjname which corresponding the 

source code 

;; Action: 

;; 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

(define (ex:sdg-source-vertex-byprj vset) 

(let ((file-list (prj:contribute-nonlib-source-files ss:main-

project))) 

;(let ((file-list (prj:topincludes ss:main-project))) 

;(let ((file-list (prj:source-file-names-no-duplicate ss:main-

project))) 

(for-each 

(lambda (files) 

;;count the pLOC for each source file 

; (let* ((fileuid (file:uid files)) 
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; (fileloc (file-get-linecount fileuid)) 

; (filename (file:fname-base-only (file:name files)))) 

; (format #t "~a:~a:~a lines\n" fileuid filename fileloc)) 

(define line-number 1) 

(let* ((infilename (file:name files)) 

(in-port (open-input-file infilename)) 

(prj ss:main-project) ;; there is only one project 

) 

(define oneline-of-code (read-line in-port)) 

(while (not (eof-object? oneline-of-code)) 

(pdg-vertex-set-union! vset (file:vertices-in-line files line-

number)) 

(set! oneline-of-code (read-line in-port)) 

(set! line-number (+ 1 line-number)) 

) 

(close-input-port in-port) 

) 

) 

file-list))) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

;; Name: (ex:prj-vertex-b-slice-source-numberofvertex 

outfilename) 

;; Args: outfilename : 

;; Returns: number of vertex of backward slices 

;; Action: 

;; backward slicing every program point that corresponding the 

source code in a project 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;; 

(define (ex:prj-vertex-b-slice-source-numberofvertex outfilename) 

(let ((out-port (open-output-file outfilename ))) 

 (define vset-sourcefile (pdg-vertex-set-create)) 

 (ex:sdg-source-vertex-byprj vset-sourcefile) 

 (define vset-list (pdg-vertex-set-sort vset-sourcefile "")) 

  (for-each 

   (lambda (vertex) 

  (let* ((vs (pdg-vertex-set-create))) 

   (pdg-vertex-set-put! vs vertex) 

;     (vi:forward-slice ss:main-project-viewer vs) 

   (vi:slice ss:main-project-viewer vs) 

   (let* ((querypoints (set-cardinality (ex:get-

displayed-set 'query-points))) 

;     (vset-queryresults (ex:get-displayed-set 'query-

results)) 

     (queryresults (set-cardinality (pdg-vertex-set-

intersect 

       vset-sourcefile 
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       (ex:get-displayed-set 

'query-results)))) 

   ) 

;     (write querypoints out-port) 

;     (write-char #\tab out-port) 

   (write queryresults out-port) 

   (newline out-port) 

   ) 

         (ex:set-displayed-set 'query-points (pdg-vertex-set-

create)) 

   (ex:set-displayed-set 'query-results (pdg-vertex-set-

create)) 

        ) 

    ) 

   vset-list) 

 (close-output-port out-port))) 

 

A.2 Filter Automated Analysis Script (Excel Macro) 

The Excel macro script used to remove duplicated lines and calculate the slice 

size for each file in the system in the CodeSurfer is as follows: 

 

' Filter for each file the slice lines  

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 

Sub Slice-Size() 

Dim myRange As Variant 

Dim row As Integer 

Dim cell As Range, myBin As Range, myData As Range, newrange As 

Range 

Dim sh As Worksheet 

Dim Rang As Range, UniqueValues As New Collection 

Set sh = Sheets("filter") 

With sh 

Set cell = Cells(1, 2) 

Set cellset = .Range("F1:ZZ2000") 

Set mycount = .Range("D1:D30000")  

' this is the name of the source file 

myRange = .Range("A1:A30000").Value 

var1 = cell.Address 

var2 = cell.Address 

Counter1 = 2 

Counter2 = 1 
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.Range("D1").Value = "File Name" 

For row = 1 To 24999 

If myRange(row, 1) = myRange(row + 1, 1) Then 

var2 = Cells (row + 1, 2).Address 

Else 

Set newrange = .Range (var1, var2) 

var2 = Cells (row + 1, 2).Address 

var1 = var2 

On Error Resume Next  

' ignore any subsequent error 

For Each Rang In newrange 

UniqueValues.Add Rang.Value, CStr(Rang.Value)  

' add the unique item 

Next Rang 

On Error GoTo 0 

countuniquevalues = UniqueValues.Count 

mycount (Counter1, 1) = myRange(row, 1) 

.Range("e" & Counter1).Value = countuniquevalues 

Counter1 = Counter1 + 1 

cellset(1, Counter2) = myRange(row, 1) 

For w = 1 To countuniquevalues 

cellset(w + 1, Counter2) = UniqueValues(w) 

Next w 

Counter2 = Counter2 + 1 

Set UniqueValues = Nothing 

End If 

Next row 

End With 

End Sub 
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